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Abstract: We present a class of controls that provide an effect similar to the one produced
by conventional matching conditions between control and disturbance, but now for a broader
class of systems. This is the class of piecewise-constant functions with varying amplitudes,
generated by approximations of “ideal controls” — linear combinations of delta-functions and
their higher-order derivatives. Such a class allows to calculate feedback controls by solving
problems of open-loop control.
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1. PROBLEM

Consider the following linear system with control u and
uncertain disturbance (noise) v:

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t)v(t), t ∈ [t0, t1]. (1)

The vector dimensions are x ∈ R
n, u ∈ R

m, v ∈ R
k,

m, k ≤ n. The time interval [t0, t1] is fixed in advance.
The given matrix functions A(t) ∈ R

n×n, B(t) ∈ R
n×m,

C(t) ∈ R
n×k are sufficiently smooth for our constructions.

Disturbance v(t) is a piecewise-continuous function subject
to hard bound v(t) ∈ Q(t), t ∈ [t0, t1], where Q(t) is
a set-valued function with values in convRk — the class
of non-empty convex compacts in R

k. The function Q(t)
is continuous in the Hausdorff metric. It could be, for
example, defined by inequalities |vi(t)| ≤ νi, i = 1, . . . , k.

The aim of the control is to steer the system to a given
target set M ∈ convRn at a prescribed time t1, despite
the disturbance.

Let us describe the considered classes of control functions.
It is well known from the theories of control under uncer-
tainty and differential games (see Leitmann (1982); Başar
and Bernhard (1995); Krasovski (1971); Krasovski and
Subbotin (1988); Kurzhanski (1999)) that if B(t) ≡ C(t)
and control u(t) belongs to the same class as v(t), namely,
u(t) ∈ P(t), where P(t) = α(t)Q(t), |α(t)| ≥ 1, so
that the bounds on u and v are similar (“homothetic”),
then the solutions to the corresponding min-max terminal
control problems (like min-max over u, v of the terminal
distance to the target set M ∈ convRn) have the fol-
lowing property: the solution in the classes of open-loop
and closed-loop controls coincide. A completely different
situation arises when the mentioned similarity condition
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does not hold. In this case the closed-loop control problem
is much harder to solve than for the open-loop, and may
require a significant increase in computational burden.

Problem 1. Specify classes of controls that allow to reduce
the closed-loop terminal min-max problem to open-loop.

Here we present the class of controls that provide an effect
similar to the one produced by conventional matching
conditions between u and v, but now for a broader class of
systems. This is the class of piecewise-constant functions
with varying amplitudes, generated by approximations of
“ideal controls” — linear combinations of delta-functions
and their higher-order derivatives. Such a class allows to
calculate feedback controls by solving problems of open-
loop control.

2. GENERALIZED CONTROLS

Let the control input be a generalized function (a distribu-
tion) of order s. The latter may be presented as the sum of
generalized derivatives of functions of bounded variation
(see Gelfand and Shilov (1964); Schwartz (1950)):

u(t) =

s
∑

j=0

dj+1Uj(t)

dtj+1
, Uj(·) ∈ BV ([t0, t1];R

m). (2)

In particular, as indicated by Kurzhanski and Osipov
(1969), the optimal generalized control problem of steering
the system to a prescribed state in the absence of uncer-
tainty has the form

u(t) =

n
∑

i=1

s
∑

j=0

hi,jδ
(j)(t− τj), (3)

where δ(t) = χ′(t) is the delta-function — the generalized
derivative of the Heaviside function χ(t) ∈ BV [t0, t1];
vectors hi,j ∈ R

m define the direction and the amplitude of
the generalized impulses, τi are the times of these impulses.

Substituting control input (2) into the original differential
equation (1), we come to the following impulse control
system (see Kurzhanski and Osipov (1969)):



dx(t) = A(t)x(t)dx(t) + B(t)dU(t) + C(t)v(t)dt, (4)

on t ∈ [t0, t1], where B(t) = [L0(t) · · · Ls(t)], U(t) =

[U0(t) · · · Us(t)] ∈ BV ([t0, t1];R
m(s+1)) is an impulse

control. The aim of the control is to ensure x(t1+0) ∈ M .
Matrix functions Lj(t) are here defined by the recurrence
relations

L0(t) = B(t), Lj(t) = A(t)Lj−1(t)− L′

j−1(t). (5)

Therefore, higher-order generalized impulses may increase
the control possibilities in the sense that RangeB(t) ⊇
RangeB(t) (here and further Range is the column space
of a matrix).

Assumption 1. There exists an s ≤ n − 1 such that
RangeB(t) ⊇ RangeC(t) for all t ∈ [t0, t1].

This assumption holds if, for example, A(t) ≡ A, B(t) ≡
B, and [A,B] is a controllable pair. In this case the
minimum value of s coincides with the controllability index
of the system.

We now we replace the “ideal” impulse control in system
(4) by physically realizable bounded functions. To do that
we introduce a hard bound on the control input u(t) =
dU/dt: u(t) ∈ P(t). Then system (4) acquires the form

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t)v(t), t ∈ [t0, t1]. (6)

Here u(t) = [u0(t) · · · us(t)] ∈ R
m(s+1), and the aim of

the control is again x(t1) ∈ M .

It is known that if the matching condition holds 1

(B(t)P(t) −̇C(t)Q(t)) + C(t)Q(t) = B(t)P(t) (7)

then the solution of feedback control problem simpli-
fies significantly (see Krasovski and Subbotin (1988);
Kurzhanski (1999)). This condition is equivalent to con-
vexity of f(ℓ) = ρ (ℓ | B(t)P(t)) − ρ (ℓ | C(t)Q(t)) —
the difference of support functions for sets B(t)P(t) and
C(t)Q(t).

Our aim will be to match the bounds of control and
disturbance in order to satisfy condition (7). With set Q(t)
given, there exist at least the next two approaches:

(1) Choose an appropriate P(t).
(2) Choose P(t) such that B(t)P(t) −̇C(t)Q(t) 6= ∅.

Then choose a set Q̂(t) ⊇ Q(t) such that the match-
ing condition will hold.

2.1 Example

Consider a three-body oscillating system (see Vostrikov
et al. (2006))







mẅ1 = k(w2 − 2w1) +mv1(t),

mẅ2 = k(w3 − 2w2 + w1) +mv2(t),

mẅ3 = k(w2 − w3) +mu(t) +mv3(t),

(8)

that consists of a chain of linked weights of mass m
connected by springs of stiffness k. Variables wj are the
displacements of the weights from equilibrium. Control u
and disturbance vj are the forces applied to the weights.
We assume the hard bound on disturbance |vj(t)| ≤ νj ,
j = 1, 3.

1 Symbol −̇ denotes the geometric (Minkowski) difference of the sets:
A −̇B = {x | x+ B ⊆ A}.

The matching condition for the system (8) does not hold
since the control u only enters the last equation, whereas
the disturbance is present in each of the equations.

Rewriting the system (8) in normal form (denoting ω =
k/m) we get















ẋj = x3+j , j = 1, 3;

ẋ4 = ω(x2 − 2x1) + v1(t),

ẋ5 = ω(x3 − 2x2 + x1) + v2(t),

ẋ6 = ω(x2 − x3) + u(t) + v3(t).

(9)

To fulfill condition RangeB(t) ⊇ RangeC(t) it is neces-
sary to apply distributions at least of order s ≥ 4. In our
example we choose s = 5. Then matrix B(t) will be

B =

















0 0 0 0 0 ω2

0 0 0 ω 0 −3ω2

0 1 0 −ω 0 2ω2

0 0 0 0 ω2 0
0 0 ω 0 −3ω2 0
1 0 −ω 0 2ω2 0

















.

To match the bounds on u and v we first perform a linear
substitution of variables:

û1 = u1 − ωu3 + 2ω2u5, û3 = ωu3 − 3ω2u5, û3 = ω2u5,

û2 = u2 − ωu4 + 2ω2u6, û4 = ωu4 − 3ω2u6, û6 = ω2u6.

Then the system (9) takes form






ẋ1 = x4 + û6(t), ẋ4 = ω(x2 − 2x1) + +û5(t) + v1(t),

ẋ2 = x5 + û4(t), ẋ5 = ω(x3 − 2x2 + x1) + û3(t) + v2(t),

ẋ3 = x6 + û2(t), ẋ6 = ω(x2 − x3) + û1(t) + v3(t).

We further choose the bounds on the controls as

|û1(t)| ≤ α3ν3, |û3(t)| ≤ α2ν2, |û5(t)| ≤ α1ν1, αj ≥ 1.

Controls û2(t), û4(t), û6(t) may be bounded by an arbi-
trary convex set. In particular, we may set û2(t) = û4(t) =
û6(t) = 0 in order to preserve the original physical sense
(the control is a force which acts only on the velocities,
but not on the displacements).

3. CONTROL INPUTS FOR THE ORIGINAL
SYSTEM

The suggested approach allows us to find a feedback con-
trol for system (6), so that then, for a certain realization of
v(t), one may calculate the control trajectory u(t). After
that it is necessary to indicate the corresponding control
input for the original system (1).

It is not possible to apply representation (2) directly, since
the smoothness (and even the continuity) of function u(t)
is originally not guaranteed. To overcome this difficulty,
we suggest to approximate the generalized controls using
one of the following schemes.

(1) In (3), replace the derivatives of delta-functions by
their bounded approximations. In this case we come
to a system different from (6), for which it is necessary
to apply the theory of the above.

(2) Solve the control problem for the system (6), then
approximate the realization of the control u(t) by
functions sufficiently smooth to apply the represen-
tation (2).



3.1 First scheme

Following (Dar’in and Kurzhanskii (2007); Kurzhanski and
Daryin (2008)), we replace in (3) the derivatives of the
delta-function by their piecewise-constant approximations:

u(t) =

n
∑

i=1

s
∑

j=0

hi,j∆
(j)
h (t− τj), (10)

where ∆
(0)
h (t) = h−11[0,h](t),

∆
(j)
h (t) = h−1

(

∆
(j−1)
h (t)−∆

(j−1)
h (t− h)

)

. (11)

Note the following properties of the these approximations.

(1) The weak* limit (as h → 0) of ∆
(j)
h (t) in the space of

generalized functions of order j is δ(j)(t).
(2) Recurrence relations (5) lead to the next explicit form

of these functions:

∆
(j)
h (t) = h−(j+1)

j
∑

i=0

(−1)iCi
j1[ih,(i+1)h](t).

The Cauchy formula for system (6) is

x(ϑ) = X(ϑ, t0)x0 +
s

∑

j=0

∫ ϑ

t0

X(ϑ, t)Lj(t)uj(t)dt

+

∫ ϑ

t0

X(ϑ, t)C(t)v(t)dt. (12)

Note that functions Lj(t) from (5) are defined by relations

Lj(t) = (−1)jX(t, t0)[X(t0, t)B(t)](j).

We then represent these as convolutions with derivatives
of the delta-function:

Lj(t) = X(t, t0)

∫

R

X(t0, τ)B(τ)δ(j)(τ − t)dτ,

After that we pass to approximations (11):

M
(j)
h (t) =

∫ t+(j+1)h

t

X(t, τ)B(τ)∆
(j)
h (τ − t)dτ. (13)

Theorem 1. Matrix functions M
(j)
h (t) satisfy recurrence

relations

M
(j)
h (t) = h−1(M

(j−1)
h (t)−X(t, t+ h)M

(j−1)
h (t+ h)),

M
(0)
h (t) = h−1

∫ t+h

t

X(t, τ)B(τ)dτ.

In particular, for A(t) ≡ A, B(t) ≡ B

M
(j)
h = h−j(I−e−Ah)jM

(0)
h , M

(0)
h = h−1

[

∫ h

0

eAtdt

]

B.

Theorem 2. Let the matrix function A(t) be continuous,
and B(t) be s+ 1 times continuously differentiable. Then

functions M
(j)
h (t) will converge to Lj(t) uniformly on

[t0, t1], j = 0, . . . , s as h → 0.

Corollary 1. Under the stated conditions, the matrix func-

tion Mh(t) =
(

M
(0)
h (t) · · · M

(s)
h (t)

)

converges to B(t)

uniformly on [t0, t1] as h → 0.

Corollary 2. If rankB(t) ≡ n, then for sufficiently small
h > 0 one also has rankMh(t) ≡ n.

Substituting in (12) the functions Lj(t) by M
(j)
h (t) we get

xh(ϑ) = X(ϑ, t0)x0 +

s
∑

j=0

∫ ϑ

t0

X(ϑ, t)M
(j)
h (t)uj(t)dt

+

∫ ϑ

t0

X(ϑ, t)C(t)v(t)dt. (14)

This is the Cauchy formula for system

ẋh(t) = A(t)xh(t) + Mh(t)u(t) + C(t)v(t). (15)

Theorem 3. Trajectories xh(t) of system (15) converge
uniformly to the trajectory x(t) of the system (6) with
h → 0 over [t0, t1].

Theorem 4. Let u(t) ≡ 0, v(t) ≡ 0 for t ∈ (ϑ, ϑ+(s+1)h].
Then xh(ϑ+(s+1)h) = x(ϑ+(s+1)h), where x(t) is the
trajectory of the original system (1) with control

uh(t) =
s

∑

j=0

∫ t

t0

∆
(j)
h (t− τ)uj(τ)dτ. (16)

Note that uh(t) is non-anticipative: it depends only on
values of u(τ) for τ ≤ t, i.e. it may be calculated using
only the information available by time t.

Theorems stated above provide the following scheme for
calculating control inputs in the original system.

(1) Fix h > 0 and consider system (15).
(2) Apply one of the approaches to choose the bounds

on control and disturbance, with B(t) replaced by
Mh(t). (Due to corollary 2, if RangeB(t) = R

n, then
RangeMh(t) = RangeB(t).)

(3) For system (15) with chosen constraints design a
feedback control U (t, x).

(4) Find the realization of control trajectory u(t).
(5) Using (16), find the control input for the original

system (1). (Since uh(t) depends only on the past
values of u(t), it may be calculated on-line.)

3.2 Second scheme

Here we briefly describe the second scheme of calculating
the control input for the original system. Let u(t) =
[u0(t) · · · us(t)] be the realization of the control of system
(6). We approximate it by convolving with sufficiently
smooth functions û(t) = [û0(t) · · · ûs(t)]:

ûj(t) = h−1

∫ t1

t0

Kj((t− τ)/h)uj(τ)dτ.

The convolution kernels Kj(t) should satisfy the following
requirements: Kj(t) = 0 for t < 0; Kj(t) ≥ 0 for t ≥ 0;
Kj(t) is j times continuously differentiable; they satisfy
the normalization condition:

∫

∞

0
Kj(t)dt = 1.

One may select Kj(t), for example, as the following
piecewise-polynomial functions:

Kj(t) = 1[0,1](t)Cj(t(1 − t))j+1, Cj =
(2j + 3)!

((j + 1)!)2
.

The control û(t) corresponds to the next control input for
the original system (1):

û(t) =

s
∑

j=0

û
(j)
j (t) =

s
∑

j=0

h−(j+1)

∫ t1

t0

K
(j)
j ((t−τ)/h)uj(τ)dτ.

This approximation has the following properties.

(1) ûj(t) → uj(t) almost everywhere when h → 0.
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Fig. 1. Control input uj(t) for the system (6)

(2) Trajectories x̂(t) of the system (1) under control û(t)
coincide with the trajectories of the system (6) under
control û(t). The latter converge pointwise to the
trajectories x(t) of the system (6) under control u(t).

(3) û(t) depends only on values of u(τ) for τ ≤ t,
i.e. it may be calculated using only the information
available by time t.

3.3 Example

Consider system
{

ẋ1(t) = x2(t) + v1(t),

ẋ2(t) = u(t) + v2(t),

with hard bound on disturbance as |v1| ≤ µ1, |v2| ≤ µ2.

For this system we have

B(t) =

[

0 1
1 0

]

, Mh(t) =

[

h/2 1
1 0

]

.

To apply the first scheme, we make a linear change of
variables: û1(t) = hu1(t)/2 + u2(t), û2(t) = u1(t), which
leads to system (15) of form

{

ẋh1(t) = xh2(t) + û1(t) + v1(t),

ẋh2(t) = û2(t) + v2(t).

Here one may choose the following constraint on control:
|û1| ≤ ν1, |û2| ≤ ν2, where νj ≥ µj .

Applying the second scheme we get a system (6) of form
{

ẋ1(t) = x2(t) + u1(t) + v1(t),

ẋ2(t) = u2(t) + v2(t),

where the hard bound on control may be also chosen as
|u1| ≤ ν1, |u2| ≤ ν2, with νj ≥ µj .

Suppose that a control realization for system (6) is de-
picted in Fig. 1. Then Fig. 2 shows the control inputs for
the original system (1) as calculated using both schemes.
Here t0 = 0, t1 = 5, h = 0,5.
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