The Problem of

Output Measurement Feedback Control

Under Set-valued Uncertainty:

from Theory to Computation

A.B.KURZHANSKI

(Moscow State Univ. and Univ. of California at Berkeley)

Presentation at 44-th IEEE CDC and 28-th Chinese National Control Conference

Shanghai, China, December 17, 2009

OUTLINE

- Motivations
- 2. The Basic Problem. The Separation Property.

2. The GSE Problem of Guaranteed (Set-Membership) State Estimation

- 3. The GCS Problem OF Guaranteed Control Synthesis
- 4. Combination of GSE AND GCS: the Solution Strategy
- the system and its reconfiguration 5. Systems with Linear Structure:
- reduction to finite-dimensions 6. Linear Systems: the Solution Scheme,
- 7. Calculation: the Ellipsoidal and Polyhedral Techniques
- 8. Conclusion

MOTIVATIONS

Team Control Synthesis Complete measurements

The System Equations and the Uncertainties

The uncertain system:

$$\frac{dx}{dt} = f_1(t, x, u) + f_2(t, x, v), x \in \mathbb{R}^n, t \in [t_0, \vartheta]$$

extendibility of solutions. with continuous right-hand sides satisfying conditions of uniqueness an

hard bounds on control u and unknown disturbance v(t):

$$u \in \mathcal{P}(t), \ \mathbf{v}(t) \in Q(t),$$
 (2)

 $\mathcal{P}(t)$, Q(t) — compact sets in \mathbb{R}^p , \mathbb{R}^q ,

Hausdorff-continuous.

Measurement equation:

$$y(t) = h(t, x) + \xi(t), \quad y \in \mathbb{R}^m, \tag{3}$$

measurements — y(t), $t \in \mathcal{T}$ – (continuous or discrete)

disturbance in measurement $\xi(t)$ — unknown but bounded:

$$\xi(t)\in\mathcal{R}(t),\ \ t\in[t_0,\vartheta],$$

 $\mathcal{R}(t)$ — similar to $\mathcal{P}(t)$, h(t,x) — continuous.

Initial condition:

$$x(t_0) \in X^0$$
,

 X^0 — compact.

Starting Position: $\{t_0, X^0\}$

BASIC PROBLEM

STEER SYSTEM

$$\frac{dx}{dt} = f_1(t, x, u) + f_2(t, x, v), \ x \in \mathbb{R}^n, \ t \in [t_0, \vartheta],$$

$$y(t) = h(t, x) + \xi(t), \ ; \ y \in \mathbb{R}^m,$$
(3)

from starting position $\{t_0, \mathcal{X}^0\}$ to terminal position $\{\vartheta, \mathcal{M}\}$, by feedback control strategy $\mathcal{U}(t,\cdot)$,

on the basis of available information:

- system model : equations (1), (3),
- starting position $\{t_0, \mathcal{X}^0\}$,
- available measurement y(t),
- given **constraints** on **control** u and uncertain **disturbance inputs** $v(t), \xi(t)$

What should the NEW STATE of the SYSTEM be?

*** Classical case under complete information:

Position (state) $-\{t, x\}$ - single valued

Closed-loop control : $\{\mathbf{u}(\mathbf{t}, \mathbf{x})\}$

Trajectories – single-valued : $x[t] = x(t, t_0, x^0)$

*** Output feedback control under incomplete information:

with – set-valued bounds (no statistical data available):

Position (state) – set-valued: X[t]

On-line set-valued position (NEW STATE) of the system may be taken as:

*
$$\{t, y_t(\cdot)\}$$
 — memorize measurements,

(in stochastic control this is done through observers and filters (Kalman))

** $\{t, X[t]\}$ — find set-valued information set

set-valued information tubes consistent with measurements and constraints on uncertain items: find

through Hamilton-Jacobi-Bellman (HJB) PDE equations). such that $X[t] = \{x : V(t,x) \le \alpha\}$ is the level set of V(t,x), (found *** $\{t, V(t, \cdot)\}$ — find information state – function V(t, x)

Guaranteed State Estimation under Set-membership noise

Problem I of Measurement Output Feedback Control:

Specify feedback strategy (closed-loop controls) U(t, X[t]) or $U(t, V(t, \cdot))$ which steers overall system

FROM any starting position $\{\tau, \mathcal{X}[\tau]\}, \tau \in [t_0, \vartheta]$

TO given neighborhood \mathcal{M}_{μ} of target set \mathcal{M} at time ϑ :

$$\{\mathfrak{r}, \mathfrak{X}[\mathfrak{r}]\} \to \{\mathfrak{d}, \mathfrak{X}[\mathfrak{r}]\}, \ \mathfrak{X}[\mathfrak{d}] \subseteq \mathfrak{M}_{\mu}$$

despite unknown disturbances and incomplete measurements.

ensure the existence and extendability of solutions to differential inclusion ATTENTION for MATHEMATICIANS: $U = \{U(t, X[t])\}$ must

$$\dot{x} \in f_1(t, x, U(t, X[t])) + f_2(t, x, v),$$

within interval $t \in [t_0, \vartheta]$, whatever be v(t).

(Measurement) Output Feedback Control

Closed-loop (feedback) control strategies: $\mathcal{U}(t,\mathcal{X})$, $\mathcal{U}(t,V(t,\cdot))$,

with state $\{t, X\}$, or $\{t, V(t, \cdot)\}$,

and trajectories –set-valued: $X[t] = X(t, t_0, X^0)$

or single valued x[t], with set-valued error-bound $\mathcal{R}[t]$

with state $\{t, x[t], \Omega[t]\}$ (external estimate $\mathcal{E}[t] \supseteq \mathcal{R}[t]$).

trajectories $x[t] = x(t, t_0, x^0),$

error bounds $\Omega[t] = \Omega(t, t_0, X^0 - x^0)$.

REMARK: Problem I may be separated into:

Problem GSE of guaranteed state estimation(finite-dimensional)

and

Problem GCS of guaranteed control synthesis (infinite-dimensional)

OUR AIM:

- (a) Find possibility of solutions while avoiding infinite-dimensional
- (b) Design feasible computational methods.

SOLUTION METHODS

(a) GENERAL METHOD:

the HAMILTON-JACOBI-BELLMAN (HJB) EQUATIONS

(b) USING INVARIANT SETS and AIMING METHODS

SET-VALUED CALCULUS+ NONLINEAR ANALYSIS

FOR LINEAR SYSTEMS: CONVEX ANALYSIS

(c) THE H-INFINITY APPROACH

(d) APPROXIMATE METHODS:

THE COMPARISON PRINCIPLE, DISCRETIZATION METHODS

(e) COMPUTATION METHODS FOR LINEAR SYSTEMS:

ELLIPSOIDAL CALCULUS, POLYHEDRAL CALCULUS or BOTH

(f) INTERTWINING THE ABOVE METHODS

Problem GSE of Guaranteed State Estimation

The One-Stage Problem

NOTE THAT THERE IS WORST CASE NOISE and BEST CASE NOISE

Examples: nonlinear maps

$$\begin{cases} x(k+1) &= \underline{f}(x(k)) \\ \underline{y(k+1)} &= \underline{G}x(k+1) + \xi \\ \\ X(k+1) &= \frac{1}{2}x(k+1) + \xi \\ X(k) &= \left\{x \in \mathbb{R}^2 : |x_i| \le 1; i = 1, 2\right\}, \quad y(k+1) = x_2(k) + \xi, \quad |\xi| \le \mu, \\ X_Y(k+1) &= \left\{x : x \in [y(k+1) + \mu, y(k+1) - \mu]\right\}, \quad X(k+1) = f(X(k)) \cap X_Y(k+1) \\ X_Y(k+1) &= \frac{1}{2}x(k+1) + \frac{1}{$$

f(X(k))

Nonlinear Examples

Unkown but bounded noise

unknown, with given bounds (i)Measurements – at given time (continuous or discrete). Noise

a best case when $\mathcal{W}[t]$ may even reduce to a point Has a worst case when $\mathcal{W}[t]$ is largest possible and

Poisson. Noise - with given bounds and given probabilistic density. (ii) Measurements arrive at random instants of time, due to distribution of

zero. The statistical estimates of x are consistent. With stochastic noise the worst and best cases arrive with probability

The Dynamics of the Information Set

 t_* and t^* are the instants of discrete observations

Problem GSE of Guaranteed ("Minmax") State Estimation

Problem GSE may be formulated in two versions - E_1 and E_2

Problem E_1 : Given are equations

$$\frac{dx}{dt} = f_1(t, x, u) + f_2(t, x, v), \quad y(t) = h(t, x) + \xi(t)$$
 (i)

 $y = y^*(t), t \in [t_0, \tau],$ and constraints position $\{t_0, \mathcal{X}^0\}$, used control $u[s], s \in [t_0, \tau)$, measurement

$$u \in \mathcal{P}, \ \nu \in Q, \ \xi \in \mathcal{R}$$
 (ii)

with $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ given.

Specify information set $\mathcal{X}[\tau]$, of solutions $x(\tau)$ to system (i), consistent with system equations, measurement $y^*(t)$, $t \in [t_0, \tau]$ and constraints (ii).

The information set $X[\tau]$ is the guaranteed estimate of $x(\tau)$.

$$V(\tau, x) = \min_{\nu} d(x(t_0), \mathcal{X}^0)$$

on-line calculations, following the evolution of $\mathcal{X}[t]$ in time.!!! It is necessary not only to calculate set $\mathcal{X}[\tau]$, but to arrange

This leads to the problem of DYNAMIC OPTIMIZATION:

 $y^*(s), s \in [t_0, \tau],$ **Problem** E_2 Given starting position $\{t_0, \mathcal{X}^0\}$, and realization

Find value function:

$$V(\tau, x) = \min_{\nu} \{ d(x(t_0), X^0) \mid \nu(t) \in Q(t), t \in [t_0, \tau] \}$$

due to equation (1), under additional conditions

$$x(\tau) = x$$
; $y^*(s) - h(s, x(s)) \in \mathcal{R}(s)$, $s \in [t_0, \tau]$.

The last condition is actually an on-line state constraint

The following relation is true

$$X[t] = \{x : V(t, x) \le 0\}$$
 !!!

equation! The value function V(t,x) may be found by solving an HJB

Introduce notation $V(\tau, x) = V(\tau, x | V(t_0, \cdot)),$

Then the principle of optimality for problem GSE reads:

$$V(\tau, x|V(t_0, \cdot)) = V(\tau, x|V(t, \cdot|V(t_0, \cdot))), t_0 \le t \le \tau. (!)$$

calculate V(t,x). This allows to derive an HJB (Dynamic Programming) equation, to

The HJB equation:

$$\frac{\partial V}{\partial t} + \max_{\nu} \left\{ \left(\frac{\partial V}{\partial x}, f_1(t, x, u^*(t)) + f_2(t, x, \nu) \right) - d^2(y^*(t) - h(t, x), \mathcal{R}(t)) \middle| \nu(t) \in Q(t) \right\} = 0,$$
under boundary condition $V(t_0, x) = d^2(x, X^0)$.

Discretized scheme: $X[t+\sigma] \sim X[t+\sigma-0] \cap Y(t+\sigma)$

The Dynamics of the Information Set

 t_* and t^* are the instants of discrete observations

Problem GCS of Guaranteed Synthesizing Control

the tube $X[\tau]$ or the function $V(\tau, \cdot)$. The "motion" of the evolving system is given by either

Problem GCS. Find value function

$$\mathcal{V}(\tau, V(\tau, \cdot)) = \min_{u} \max_{y} \left\{ d^{2}(x[\vartheta], \mathcal{M}) \middle| u \in \mathcal{U}, y(\cdot) \in Y(\cdot, u) \right\}$$

over closed-loop controls and all predicable "future" tubes

$$Y(\cdot,u) = Y(\vartheta,\tau;X[\tau],u).$$

Principle of Optimality in metric space of functions $V(\cdot)$: Value function $\mathcal{V}(\tau, x) = \mathcal{V}(\tau, V(\tau, \cdot))$ satisfies the (infinite-dimensional)

$$\mathcal{V}(\tau,V(\tau,\cdot))=\mathcal{V}(\tau,V(\tau,\cdot)|\vartheta,\mathcal{V}(\vartheta,\cdot))$$

Finding $\mathcal{V}(t,V(t,\cdot))$ produces the solution strategy

$$u = u^0(t, V(t, \cdot)) \in \mathcal{U}$$

functions rather than in finite dimensions But to find $\mathcal{V}(\tau, V(\tau, \cdot))$ one would have to solve a PDE in the space of

The solution strategy

$$u = u^0(t, V(t, \cdot)) \in \mathcal{U}$$

guarantees condition

$$\mathcal{V}(\tau, V(\tau, \cdot)) \le \max_{y} \max_{x} \left\{ d^{2}(x, \mathcal{M}) \mid V(\vartheta, x | V(\tau, \cdot)) \le 0 \right\} \mid u \in \mathcal{U}; y(\cdot) \in Y(\tau, u) \right\}$$

for **any** strategy $u = u(t, V(t, \cdot)) \in \mathcal{U}$.

 $X[t] = \{x : V(t,x) \le 0\}$ – the on-line STATE of the system. Note that $V(t,\cdot)$ are the "motions" of the formal evolution of

and others computational burden, however there are promising approaches, such as A straightforward application of the DP approach may demand a heavy level set methods, the comparison principle, discretization techniques

BUT DO NOT HURRY TO DISCARD DP:(!!!)

BUT ONLY THROUGH FINITE-DIMENSIONAL SCHEMES(!!!) THE EXACT SOLUTION MAY BE REACHED WITHOUT INFINITE-DIMENSIONAL PDE's, QUITE A NUMBER OF NONLINEAR IN CASE of LINEAR SYSTEMS and

schemes. The computations are of course all designed within finite-dimensional

II. Linear Systems under Hard Bounds

The uncertain linear system:

$$dx/dt = A(t)x + B(t)u + C(t)v(t), (L1)$$

with continuous matrix coefficients A(t), B(t), C(t)

hard bounds on control u and disturbance v(t):

$$u \in \mathcal{P}(t), \ v(t) \in Q(t), \ t \in [t_0, \vartheta]$$

 $\mathcal{P}(t)$, Q(t) — convex compact sets in \mathbb{R}^p , \mathbb{R}^q ,

Hausdorff-continuous.

Measurement equation:

$$y(t) = H(t)x + \xi(t)$$
, rank $H = m, (L2)$

disturbance $\xi(t)$ — unknown but bounded:

$$\xi(t) \in \mathcal{R}(t), \ t \in [t_0, \vartheta],$$

 $\mathcal{R}(t)$ – convex, compact, Hausdorff-continuous; H(t) — continuous.

Initial condition:

$$x(t_0) \in \mathcal{X}^0$$

 χ^0 — convex compact.

Starting Position: $\{t_0, X^0\}$

Problem GCS of Output Feedback Control:

Specify feedback control strategy $U(t, \mathcal{X}[t])$ or $U(t, V(t, \cdot))$

which steers overall system

FROM any starting position $\{\tau, \mathcal{X}[\tau]\}, \tau \in [t_0, \vartheta]$

TO given neighborhood \mathcal{M}_{μ} of target set \mathcal{M} at time ϑ :

$$\{\tau, \chi[\tau]\} \to \{\vartheta, \chi[\vartheta]\}, \ \chi[\vartheta] \subseteq \mathcal{M}_{\mu}$$

despite unknown disturbances and incomplete measurements

solutions to differential inclusion **NOTE:** $\mathcal{U} = \{U(t, X[t])\}$ must ensure existence and extendability of

$$\dot{x} \in A(t)x + B(t)U(t, \mathcal{X}[t]) + C(t)\nu(t),$$

within interval $t \in [t_0, \vartheta]$, whatever be v(t).

New coordinates to simplify calculations:

- transition matrix for the original homogeneous system (1), – Take transformation $x = G(t, \vartheta)\mathbf{x}$ where $G(t, \vartheta)$ is the fundamental
- make necessary changes, then return to original notations

Then

$$\dot{x} = B(t)u + C(t)v(t),$$
 $y(t) = H(t)x + \xi(t),$
 $x(t_0) \in X^0 = X^0$

under hard bounds of type (2), (4), (5).

Rearrange last system as follows:

$$dx^*/dt = B(t)u, x^*(t_0) = 0, (a)$$

$$d\omega/dt = C(t)v(t), v(t) \in Q(t), \omega(t_0) \in X^0, (b)$$

$$z(t) = H(t)\omega + \xi(t), \xi(t) \in \mathcal{R}(t) (c)$$

$$x^* + \omega = x, z(t) = y(t) - H(t) \int_{t_0}^t B(s)u(s)ds = z(t).$$

y(s) and z(s). With $u = u^*(s)$, $s \in [t_0, t)$ given, there is a one-to-one mapping between

Define information set for system (a)-(c): $\Omega(t,\cdot) = \Omega[t]$. Then

$$\mathcal{X}[t] = x^*(t) + \Omega[t]$$

SOLUTION METHOD:

combining

HJB-techniques with calculating weakly invariant sets

their approximations functions) may be calculated through HJB equations or convex analysis or The convex information sets X and information states V(t,x) (convex

semi distance between// N.N.Krasovski's "aiming techniques." Here the control strategies are calculated by minimizing Hausdorff h_+

solutions or through discretizing the problem from the beginning. OTHER APPROACHES deal through discretization of the continuous

Comparative studies are necessary.

the continuous equations and what will be the error ??? Can we plug in the controls found through discretization into

47

Complete measurements

Output feedback

If measurement error is too large

Feedback control under complete measurements

$$nrt\ case\ {}'\mathcal{W}_N[au] o {}'\mathcal{W}[au], \quad N o \infty, \quad \sigma_N=\max_i | au_{i+1}- au_i| o \ {}'\mathcal{W}[au]$$

Feedback control under Complete Measurements

STATE: $\{\tau, x\}$ **CONTROLS: OPEN-LOOP** INVARIANT SET: $\mathcal{W}[\tau] = \{x : \forall \nu(\cdot), \exists u(\cdot) \rightarrow x(\vartheta) \in \mathcal{M}\}$

Invariant set
$$\mathcal{W}[\tau] = T[\tau, \vartheta]\mathcal{M}$$

through convex analysis This is a **linear map** $T: \mathcal{M}[\mathfrak{d}] \to \mathcal{W}[\mathfrak{T}]$, calculated

Under Matching Conditions:

$$\mathcal{P}(t) \equiv \alpha \mathcal{Q}(t), \ \alpha \in (0,1)$$

INVARIANT SET !// THE CONTROL THEN ARRIVES FROM CONDITION: TO FIND THE FEEDBACK CONTROL STRATEGY WE NEED THE

$$\mathcal{U}(t,x) = \left\{ u : \max_{v} \left\{ \frac{dd^{2}(x(\tau), \mathcal{W}[\tau])}{dt} \middle|_{u,v} \le 0 \right\} \right\}$$

FINITE TIME NOTE THAT HERE WE HAVE TO SOLVE PROBLEMS IN

PROBLEMS THIS IS MUCH HARDER THAN SOLVING STABILIZATION

for linear-quadratic control problems in infinite time the Liapunov function is a value function) (compare Value functions with control Liapunov functions:

the backward reachability sets from set $\mathcal M$ The invariant sets \mathcal{W} are

If $\mathcal{W}[\tau]$ is calculated through open loop controls Under Matching Conditions we have: $\mathcal{W}_{c}[\tau]$ is calculated through closed-loop controls, then

$$\mathcal{W}[\tau] = \mathcal{W}_c[\tau]$$

Without Matching Conditions we have:

$$\mathcal{W}[au]
eq \mathcal{W}_c[au]$$

$$\mathcal{W}[\tau] = T[\tau, \mathfrak{d}]\mathcal{M} \ \mathcal{W}_N[\tau] = T[\tau, \tau_1] \dots T[\tau_N, \mathfrak{d}]\mathcal{M}, \ \mathcal{W}_N[\tau] \to \mathcal{W}_c[\tau](N \to \infty);$$

Feedback control under Complete Measurements

STATE: $\{\tau, x\}$ NO matching conditions:

 $\mathcal{W}_N[\tau] = T[\tau, \tau_1] \dots T[\tau_N, \vartheta] \mathcal{M}$ CONTROLS: piecewise open-loop Here τ_i are the points of DISCRETE MEASUREMENTS

(compare with model-predictive controls)

Limit case (with $N \to \infty$, $\sigma_N = \max |\tau_{i+1} - \tau_i| \to 0$):

 $\mathcal{W}_N[\tau] o \mathcal{W}_c[\tau] - \text{INVARIANT SET}$

Output Feedback Control Incomplete Measurements

STATE:
$$\{\tau, \mathcal{X}[\tau]\},\$$

Under Matching Conditions

Invariant Set:

$$\mathcal{W}_I[\tau] = \{ \mathcal{X} : \forall \in \mathcal{X}, \forall \nu(\cdot), \exists u(\cdot) \, x(\tau) \to x(\vartheta) \in \mathcal{M}_{sub} \subseteq \mathcal{M} \}$$
 under on-line state constraint

$$y(t) - G(t)x(t) + \xi(t) \in \mathcal{R}(t)$$

Calculated through CLOSED-LOOP CONTROLS

$$\mathcal{W}_{l}[\tau] = \cup \{X\}, \quad X = x + \Omega$$

with
$$\mathcal{W}_I[au] = T[au, \vartheta] \mathcal{M}$$

*** Output Feedback Control Incomplete Measurements

STATE: $\{\tau, \mathcal{X}[\tau]\}$, NO matching conditions

DISCRETE measurements: $\mathcal{W}_{IN}[\tau] = T_I[\tau, \tau_1] \dots T_I[\tau_N, \vartheta] \mathcal{M}$

CONTINUOUS measurements: Limit case (with $N \to \infty$, $\sigma_N \to 0$)

 $\mathcal{W}_{IN}[au]
ightarrow \mathcal{W}_{Ic}[au] - ext{INVARIANT SET}$

FROM PIECEWISE-CONTINUOUS SOLUTIONS TO FEEDBACK **CONTROL SOLUTION STRATEGY**

REDUCTION to FINITE-DIMENSIONAL SCHEMES

To find feedback controls we need to calculate

 $d(x, \mathcal{W}[t])$ – under complete measurements (finite-dimensional scheme)

 $h_+(X[t], \mathcal{W}_I[t])$ – under incomplete output measurements

(in general - an infinite-dimensional scheme)

For linear systems with convex constraints we have:

$$\mathcal{W}_{lc}[t] = \mathcal{W}_{c}[t]$$

Then, instead of $h_+(X[t], \mathcal{M}_c[t])$ we need $h_+(X[t], \mathcal{M}_c[t])$

Under Matching Conditions:

$$\mathcal{W}_{lc}[t] = \mathcal{W}_{c}[t] = \mathcal{W}[t]$$

This may be exactly calculated through finite-dimensional schemes

Selection of control strategy

$$\mathcal{U}(\tau,x) = \left\{ u \ : \ \frac{dh_+(\mathcal{X}[\tau],\mathcal{W}[\tau])}{d\tau} \le 0 \right\}$$

EQUATIONS FOR THE SYNTHESIZED SYSTEM

The state of the system is $\{X[t] = x^*(t) + \Omega[t]\}$

We use the support function for set

$$\Omega[t] : \varphi(t,l) = \varphi(l \mid \Omega[t]) = \max\{(l,x) \mid x \in \Omega[t]\}$$

The evolution equations for $x^*(t), \Omega[t]$ are

$$\begin{cases} \dot{x}^* = B(t) \mathcal{U}(t, \mathcal{X}), \\ \frac{\partial \rho(l \mid \Omega[t])}{\partial t} = \Psi(t, l, \Omega[t], \mathcal{Z}[t]) \end{cases}$$

This a PDE for the support function $\partial \rho(l \mid \Omega[t])$.

(Z[t] is the measurement set).

IF measurements are DISCRETE, at instants $\{\tau_i\}$, then

$$\Omega[\tau_{i+1}] = \Omega[\tau_{i+1} - 0] \cap \mathcal{Z}[\tau_{i+1}]$$

$$\partial \rho(l \mid \Omega[t])/\partial t = \rho(l \mid B(t)Q(t)), t \in [\tau_i, \tau_{i+1}), \Omega[\tau_0] = \mathcal{X}^0.$$

Between measurements we calculate "ordinary" reach set without state constraints.

Support function $\rho(l \mid \Omega[t])$ may be calculated **exactly** through **Duality Theory of Convex Analysis**

But we need effective calculation for Large Dimensions

This can be reached through

ELLIPSOIDAL or POLYHEDRAL CALCULUS!

III. The Solution Through Ellipsoidal Techniques

An ellipsoid (P > 0)

$$\mathcal{E}(p,P) = \{x : (x-p,P^{-1}(x-p)) \le 1\}$$

Its support function

$$\rho(l|\mathcal{E}(p,P) = (l,x) + (l,Pl)^{1/2}$$

The target set $\mathcal{M} = \mathcal{E}(m, M)$

Hard bounds:

$$x(t_0) \in \mathcal{E}(x^0, X^0), \ u \in \mathcal{E}(p(t), P(t)),$$

 $f(t) \in \mathcal{E}(q(t), \mathcal{Q}(t)), \ \xi(t) \in \mathcal{E}(0, R(t)).$

Here
$$M = M' > 0$$
, $X^0 = X^{0'} > 0$, and

$$\mathcal{P}(t) = \mathcal{P}(t)' > 0, \ Q(t) = Q(t)' > 0, \ \mathcal{R}(t) = \mathcal{R}'(t) > 0.$$

Stage 1. Solve Problem GSE: find information set $\mathcal{W}[\tau]$.

This actually is the reach set of system

$$\dot{w} \in C(t)\mathcal{E}(q(t), \mathcal{Q}(t)), \ w(t_0) \in \mathcal{E}(x^0, X^0),$$

under on-line state constraint

$$z^*(t) - H(t)w(t) \in \mathcal{E}(0, R(t)), t \in [t_0, \tau],$$

with given $z^*(t)$.

We present $\mathcal{W}[\tau]$ through parametrized external ellipsoids!

$$\mathcal{W}[au] \subseteq \mathcal{E}(w_+(au), W_+(au) \mid \mathbf{\omega}(au)),$$

Exact ellipsoidal representations of $X[\tau]$

Denote parameters

$$\chi_{+}(\tau) = \{\gamma_{u}(\cdot), S(\cdot)\}, \ \chi_{-}(\tau) = \{\gamma_{f}(\cdot), S_{1}(\cdot), S_{2}(\cdot)\}$$

$$\mathcal{E}(x_e, X_+(\tau)) = \mathcal{E}(x_e, X_+(\tau); \chi_+(\tau)), \ \mathcal{E}(x_e, X_-(\tau)) = \mathcal{E}(x_e, X_-(\tau); \chi_-(\tau))$$

Then we have

Theorem. The following representation is true

$$\left| \left| \left\{ \mathcal{E}(x_e, X_-(\tau)) \middle| \chi_-(\tau) \right\} = \chi^*[\tau] = \bigcap \left\{ \left. \mathcal{E}(x_e, X_+(\tau)) \middle| \chi_+(\tau) \right\} \right\},$$

To Specify control strategy $U^0(\tau, \mathcal{X}, \mathcal{W})$ we need value function

$$\mathcal{V}(\tau, \mathcal{X}, \mathcal{W}) = h_{+}(\mathcal{X}, \mathcal{W})$$

but use an ellipsoidal approximation

$$\mathcal{V}_{EL}(\tau, \mathcal{X}, \mathcal{W}) = d(\mathcal{E}(x(\tau), X_{+}(\tau)), \mathcal{E}(w(\tau), W_{-}(\tau)))$$

$$\mathcal{X}(\tau) \subseteq \mathcal{E}(x(\tau), X_{+}(\tau)), \ \mathcal{W}[\tau] \supseteq \mathcal{E}(w(\tau), W_{-}(\tau))$$

Team Control Synthesis Complete measurements

Incomplete measurements

Team Control Synthesis

References

- [1] Krasovski N. N. On theory of controllability and observability of linear dynamic systems / Prikl. Math. & Mech. 1964. V. 28. N. 1. p. 3–14. In
- [2] Krasovski N. N. The theory of optimally controlled systems / 50 years Russian of mechanics in USSR. V. 1. Moscow: Nauka, 1968. P. 179-244. In
- [3] Krasovski N. N. Control and stabilization under lack of information I Izvestiya RAN. Technial Cybernetics. 1993. N. 1. p. 148–151. In Rus-
- [4] Krasovski A. N., Krasovski N. N. Control Under Lack of Information. Basel: Birkhäuser, 1984. 320 p.
- [5] Krasovski N. N., Subbotin A. I. Game-Theoretical Control Problems. N.Y.: Springer, 1998. 517 p.

- [6] Aström K. J. Introduction to Stochastic Control Theory. N.Y.: Academic Press, 1970.
- [7] Fleming W. H., Rishel R. W. Deterministic and Stochastic Optimal Control. N.Y.: Springer, 1975. 222 p.
- [8] Bertsekas D. P. Dynamic Programming and Stochastic Control. N.Y.: Academic Press, 1975. 397 p.
- [9] Liptser R. S., Shiryaev A. N. Moscow: Nauka, 1974. 696 p. In Russian. Statistics of random processes.
- [10] Başar T., $Bernhard P. H^{\infty}$ Optimal Control and Related Minimax Design Problems. SCFA. Basel: Birkhäuser, 2nd ed., 1995. 441 p.
- [11] James M. R., Baras J. S. Partially observed differential games, infinitetrol / SIAM Journal on Control an Optimization. 1996. V. 34. N. 4. p. dimensional Hamilton–Jacobi–Isaacs equations and nonlinear H^{∞} con-1342–1364
- [12] Helton J. W., James M. R. Extending H^{∞} Control to Nonlinear Systems. Philadelphia: SIAM, 1999. 333 p.

- [13] Kurzhanski A. B. Differential games of observation / Dokl. AN SSSR. 1972. V. 207. N. 3. p. 527-530. In Russian.
- [14] Kurzhanski A. B. Moscow: Nauka, 1977. 392 p. In Russian. Control and Observation under Uncertainty.
- [15] Kurzhanski A. B. The principle of optimality in measurement feedback and Optimization / Eds. Rantzer A., Byrnes C. Berlin: Springer, 2003. P. control for linear systems / Directions in Mathematical Systems Theory
- [16] Pontryagin L. S. Ordinary Differential Equations. Moscow: Nauka, 1970. 331 p. In Russian
- [17] Kurzhanski A. B., Vályi I. Ellipsoidal Calculus for Estimation and Control. SCFA. Boston: Birkhäuser, 1997. 321 p.
- [18] Milanese M., Norton J., Piet-Lahanier H., Walter E. Bounding Approach to System Identification. N.Y.: Plenum Press, 1995. 565 p.

- [19] Kruzhkov S. N. Generalized solutions to multivariate first-order nonlin-**Russian** ear equations / Mat. Sbornik. 1966. V. 70(112). N. 3. p. 394-115. In
- [20] Crandall M. G., Evans L. C., Lions P.-L. Some properties of solutions Society. 1984. V. 282. N. 2. p. 487-502. of Hamilton–Jacobi equations / Transactions of American Mathematical
- [21] Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions. N.Y.: Springer, 1993. 428 p.
- [22] Bardi M., Capuzzo-Dolcetta I. Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Boston: Birkhäuser, 1997. 570
- [23] Subbotin A. I. Generalized Solutions of First-Order PDE's. The Dynamic Optimization Perspective. Boston: Birkhäuser, 1995. 312 p.
- [24] Clarke F. H., Ledyaev Y. S., Stern R. J., Wolenski P. R. Nonsmooth Analysis and Control Theory. N.Y.: Springer, 1998. 278 p.

- [25] Kurzhanski A. B., Varaiya P. On some nonstandard dynamic program-/ Eds. Giannessi F., Maugeri A. N.Y.: Kluwer, 2004. P. 613–627. ming problems of control theory / Variational Methods and Applications
- [26] Kurzhanski A. B., Nikonov O. I. Evolution equations for assemblies of N. 5. p. 578–581. In Russian. trajectories of synthesized control systems / Dokl. RAN. 1993. V. 333.
- [27] Kurzhanski A. B., Filippova T. F. On the theory of trajectory tubes: Boston: Birkhäuser, 1993. P. 122–188. trol / Advances in Nonlinear Dynamics and Control. Ser. PSCT 17. a mathematical formalism for uncertain dynamics, viability and con-
- [28] Isaacs R. Differential Games. N.Y.: Wiley, 1965. 384 p.
- [29] Başar T., Olsder J. Dynamic Noncooperative Game Theory. N.Y.: Academic Press, 1982. 430 p.
- [30] Rockafellar R. T., Wets R. J. Variational Analysis. Berlin: Springer, 1998. 733 p.

- [31] Gusev M. I., Kurzhanski A. B. On optimization of control systems under constraints I, II / Differenc. Uravn. 1971. V. 7. N. 9, 10. p. 1591–1602, 1789–1800. In Russian.
- [32] Demyanov V. F. Minimax: Directional Derivates. Moscow: Nauka, 1970 420 p. In Russian
- [33] N. N. Krasovski N. N. Rendezvous Game Problems. VA: Nat. Tech. Inf. Serv., 1971 Springfield,
- [34] Kurzhanski A. B. Pontryagin's alternated integral and the theory of con-Russian trol synthesis // Proc. Steklov's Math. Inst. 1999. V. 224. p. 234-248. In
- [35] Pontryagin L. S. Linear differential games of pursuit / Mat. Sbornik. 1980. V. 112 (154). N. 3 (7). p. 307-330. In Russian
- [36] Sethian J. A. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999. 378 p.
- [37] Osher S., Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. N.Y.: Springer, 2003. 273 p.

- [38] Chernousko F. L. State Estimation for Dynamic Systems. CRC Press, 1994. 304 p.
- [39] Kurzhanski A. B., Varaiya P. Ellipsoidal techniques for reachability analysis. Part I: External approximations. Part II: Internal approximations. Box-valued constraints / Optimization methods and software. 2002. V. 17. p. 177–237.
- [40] Kurzhanski A. B., Varaiya P. Reachability analysis for uncertain systems pulsive systems. Ser. B. 2002. V. 9. N. 3. p. 347-367. — the ellipsoidal technique / Dynamics of continuous, discrete and im-
- [41] Kostousova E. K. Control synthesis via parallelotopes: optimization and p. 267–310. parallel computations / Optimization methods and software. 2001. V. 14.