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The System Equations and the Uncertainties

The uncertain system :

d
B fy(tx) + flt,00), X ER, 1€ 0,9 n

with continuous right-hand sides satisfying conditions of uniqueness an
extendibility of solutions.

hard bounds on control « and unknown disturbance v(7):
uePt), vitr) e Qt), (2)

P(t),Q(t) — compact sets in R” RY,

Hausdorff-continuous.



Measurement equation:
y(t) = h(t,x)+6(1), y e R", (3)

measurements — y(¢), t € T — (continuous or discrete)

disturbance in measurement &(¢) — unknown but bounded:

S(r) € R(1), 1€ o, V], “4)
R (t) — similar to P(z), h(t,x) — continuous.

Initial condition:
x(fp) € X°, (5)

XY — compact.

Starting Position: {fo,X°}






BASIC PROBLEM

STEER SYSTEM
d
|RH,\HANVHugvlT\NQQRL\VVHmmwsuNmT?@T AHV

dt
%Qvﬂbﬁvkvlevi , y € R, va

from starting position{7y, X"} to terminal position {8, M },
by feedback control strategy U(z,-),

on the basis of available information:

- system model : equations (1), (3),

- starting position{zy, X"},

- available measurement y(7),

- given constraints on control « and
uncertain disturbance inputs v(7),&(7)
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What should the NEW STATE of the SYSTEM be ?
##% (Classical case under complete information:
Position (state) — {t,x} - single valued
Closed-loop control : {u(t,x)}

Trajectories — single-valued : x[t] = x(¢, %o, x").

4% Output feedback control under incomplete information:
with — set-valued bounds (no statistical data available):

Position (state) — set-valued: X [f]
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On-line set-valued position (NEW STATE) of the system may be taken as:

* {t,y:(-)} — memorize measurements,

(in stochastic control this is done through observers and filters (Kalman))

#% {t, X[t]} — find set-valued information set

consistent with measurements and constraints on uncertain items: find

set-valued information tubes

##% Lt V(t,-)} — find information state — function V (¢,x)

such that X|¢] = {x: V(¢,x) < o} is the level set of V(¢,x), (found
through Hamilton-Jacobi-Bellman (HJB) PDE equations).
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Guaranteed State Estimation under Set-membership noise

measurements
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Problem I of Measurement Output Feedback Control:

Specify feedback strategy (closed-loop controls) U(t, X|[t]) or U(¢t,V (t,-))
which steers overall system

FROM any starting position {t, X[t]}, T € [t9, V]

TO given neighborhood M, of target set M at time U :
{T X[t} = {9, X[t]}, X[D]C M,

despite unknown disturbances and incomplete measurements.

ATTENTION for MATHEMATICIANS: U = {U(t, X|[t])} must
ensure the existence and extendability of solutions to differential inclusion

x € fi(t,x,U(t,X]t])) + fa(t,x,v),

within interval ¢ € [y, 0], whatever be v(t).
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(Measurement) Output Feedback Control

Closed-loop (feedback) control strategies: U(t, X), U(t,V(¢,-)),
with state {¢t, X}, or {7,V (¢,-)},

and trajectories —set-valued: X[t] = X(¢,t, X?)

or single valued x|t], with set-valued error-bound R [t],

with state {z,x[t], Q[t]} (external estimate E[t] O R [t]).
trajectories x[t] = x(t,y,xY),

error bounds Q[t] = Q(¢,t, XY — xY).
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REMARK: Problem I may be separated into:

Problem GSE of guaranteed state estimation(finite-dimensional)
and

Problem GCS of guaranteed control synthesis (infinite-dimensional)
OUR AIM :

(a) Find possibility of solutions while avoiding infinite-dimensional
schemes.

(b) Design feasible computational methods.
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SOLUTION METHODS

(a) GENERAL METHOD:

the HAMILTON-JACOBI-BELLMAN (HJB) EQUATIONS

(b) USING INVARIANT SETS and AIMING METHODS
SET-VALUED CALCULUS+ NONLINEAR ANALYSIS

FOR LINEAR SYSTEMS: CONVEX ANALYSIS

(c) THE H-INFINITY APPROACH

(d) APPROXIMATE METHODS:

THE COMPARISON PRINCIPLE, DISCRETIZATION METHODS
(e) COMPUTATION METHODS FOR LINEAR SYSTEMS:
ELLIPSOIDAL CALCULUS, POLYHEDRAL CALCULUS or BOTH
(f) INTERTWINING THE ABOVE METHODS
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Problem GSE of Guaranteed State Estimation
The One-Stage Problem

NOTE THAT THERE IS WORST CASE NOISE and BEST
CASE NOISE
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Examples: nonlinear maps
x(k+1) = HQQ«VV
y(k+1) = Gx(k+1) +m

Take x € %N

X(k)={xeR?: |u| < Li=1,2}, yk+1)=x(k)+E [ <y
X (k+1)={x s x€ kD) dmylk+1)— g},  X(k+1)= FOX(R) N Xy (k+1)

. / )
NN NN

e
~
/
f(X(k))

22




Nonlinear Examples

x(k+1) = f(x(k))
yk+1) = ax+b*x+§
X(k)={xecR?: |x| < 1;i=1,2}
Xy(k+1)={x:xeylk+1)—¢,yk+1)+¢|}
Xk+1)=f(X(k)NXy(k+1)

&l <e

X(k+1)

disconnected
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Unkown but bounded noise

(1)Measurements — at given time (continuous or discrete). Noise —
unknown, with given bounds.

Has a worst case when 7/[t| is largest possible and
a best case when W/ |[t] may even reduce to a point

(11) Measurements arrive at random instants of time, due to distribution of
Poisson. Noise - with given bounds and given probabilistic density.

With stochastic noise the worst and best cases arrive with probability
zero. The statistical estimates of x are consistent.
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The Dynamics of the Information Set
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t. and t* are the instants of discrete observations
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Problem GSE of Guaranteed (“Minmax’) State Estimation
Problem GSE may be formulated in two versions - E; and E;

Problem E;: Given are equations

w = f1(t,x,u) + fa(t,x,v), y(t)=h(t,x)+E(1) (1)

position {9, X"}, used control u[s], s € [ty,T), measurement
y=y*(¢), t € [ty, 7], and constraints

ueP,veQ,&eR (i
with P, Q, R given.

Specify information set X|[t], of solutions x(7) to system (i), consistent
with system equations, measurement y*(¢), ¢t € |fo,T] and constraints (ii).

The information set X|[t] is the guaranteed estimate of x(7).
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mind (x(tp), X") >0

->

x(T) € X|1]

V(t,x)=0

mind (x(ty),X°) =0

V(t,x) = Bm:&QQOYROV
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It is necessary not only to calculate set X [t], but to arrange

on-line calculations , following the evolution of X|t] in time.!!!

This leads to the problem of DYNAMIC OPTIMIZATION:
Problem E, Given starting position {fy, X"}, and realization

y*(s), s € |to,T],

Find value function:
V(z,x) = min{d(x(t0), X°) |v(z) € Q(¢t),1 € [t9,7]}
1%
due to equation (1), under additional conditions

x(t)=x; ¥y (s)—h(s,x(s)) € R(s), s € [to,7].

The last condition is actually an on-line state constraint
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The following relation 1s true
X[t ={x:V(t,x) <0} !l

The value function V(¢,x) may be found by solving an HIB
equation!

Introduce notation V(t,x) =V (t,x|V (t9,)),

Then the principle of optimality for problem GSE reads:

V(t,x|V(to,)) =V(t,x|V(¢t,-|V(t0,"))), to <t <7T. (!

This allows to derive an HIB (Dynamic Programming) equation, to
calculate V (¢,x).
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The HIB equation:

aV aV

5, 1 max %r\mc@ﬁ: vilzw?xévl

—d*(y* (1) = h(t,x), R(1)| v(r) € Q(t) ¢ =0,

under boundary condition V (fy, x) = d?(x, X°).
Discretized scheme: X[t +6|] ~ X[t+c6—0/NY(t+0)
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The Dynamics of the Information Set
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t. and t* are the instants of discrete observations
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Problem GCS of Guaranteed Synthesizing Control
The “motion” of the evolving system 1s given by either
the tube X|[t| or the function V (7, -).

Problem GCS. Find value function

V(t,V(t,-)) = min, maxy< d*(x[0], M)| u € U, y(-) € Y (-,u)

over closed-loop controls and all predicable future” tubes
Y(-,u) =Y (9,1, X[1],u).
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Value function ¥(1,x) = V(t,V(7,-)) satisfies the (infinite-dimensional)

Principle of Optimality in metric space of functions V (-):

V(t,V(t,")) = V(t,V(t,)|S, V(9,))

Finding 9/(¢,V (t,-)) produces the solution strategy

u=u’(t,V(t,")) € U

But to find 7/(t,V(t,-)) one would have to solve a PDE in the space of
functions rather than in finite dimensions.
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The solution strategy
u=u’(t,V(t,")) € U

guarantees condition

V(T,V(v,-)) < maxmax{d®(x, M) | V(9,V(z.-)) <O} |ue Ui y() €Y (t,u)}

for any strategy u = u(r,V(t,-)) € U.

Note that V (¢, -) are the "motions” of the formal evolution of
X[t] ={x:V(t,x) <0} - the on-line STATE of the system.
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A straightforward application of the DP approach may demand a heavy
computational burden, however there are promising approaches, such as

level set methods, the comparison principle, discretization techniques
and others

BUT DO NOT HURRY TO DISCARD DP:(!!!)

IN CASE of LINEAR SYSTEMS and
QUITE A NUMBER OF NONLINEAR
THE EXACT SOLUTION MAY BE REACHED
WITHOUT INFINITE-DIMENSIONAL PDFE’s,
BUT ONLY THROUGH FINITE-DIMENSIONAL SCHEMES(!!!)

The computations are of course all designed within finite-dimensional
schemes.
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II. Linear Systems under Hard Bounds

The uncertain linear system :
dx/dt = A(t)x+B(t)u+C(t)v(t),(L1)

with continuous matrix coefficients A(t),B(t),C(t)

hard bounds on control « and disturbance v(7):

ue P(t),v(t) e Qt), t € lto,V]

P(t),Q(t) — convex compact sets in R” RY,

Hausdorff-continuous.
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Measurement equation:
y(t) =H(t)x+&(t), rankH = m, (L2)
disturbance &(¢) — unknown but bounded:

&) € R(t), t € [t0, 0],
R (t) — convex, compact, Hausdorff-continuous; H(¢) — continuous.

Initial condition:
x(tg) € X 0 :

X% — convex compact.

Starting Position: {9, X"}
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Problem GCS of Output Feedback Control:
Specify feedback control strategy U (¢, X|[t]) or U(z,V (¢,-))
which steers overall system

FROM any starting position {t, X[t]}, T € [t9, V]

TO given neighborhood M, of target set M at time U :

(o X[t} = {9, X[0]}, X[9] € M,

despite unknown disturbances and incomplete measurements.

NOTE: U = {U(t, X[t]) } must ensure existence and extendability of
solutions to differential inclusion

x€eA(t)x+B()U(t,Xt]) +C(t)v(r),

within interval ¢ € [y, 8], whatever be v(t).
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New coordinates to simplify calculations:

— Take transformation x = G(¢,9)x where G(z,9) is the fundamental

transition matrix for the original homogeneous system (1)),
— make necessary changes, then return to original notations.

Then
X =B(t)u+C(1)v(1),

(1) =H(t)x+&(1),
x(tg) € X% = xY

under hard bounds of type (2), (4), (3).

42



Rearrange last system as follows:
dx* /dt = B(t)u, x"(ty) =0, (a)
do/dt =C(t)v(1), v(t) € Q(t), () € X, (b)
2(t) =H@)o+c(1), (1) € R(r) ()

!

4 o—=x, 7(t) = (i) — H(t) \ B(s)u(s)ds = =(1).

10
With u = u*(s), s € [to,t) given, there is a one-to-one mapping between

y(s) and z(s).
Define information set for system (a)-(c):  Q(z,-) = Qlt]. Then

X[r] = x*(r) + Q]
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SOLUTION METHOD:

combining
HJB-techniques with calculating weakly invariant sets

The convex information sets X and information states V (¢,x) (convex
functions) may be calculated through HJB equations or convex analysis or

their approximations.

Here the control strategies are calculated by minimizing Hausdorff /¢

semi distance between// N.N.Krasovski’s “aiming techniques.”

OTHER APPROACHES deal through discretization of the continuous
solutions or through discretizing the problem from the beginning.

Comparative studies are necessary.

Can we plug in the controls found through discretization into
the continuous equations and what will be the error 777
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Complete measurements

Wlt]

On-line state: {T,x}
Guaranteed strategy ensures
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Output feedback

T

Wi 7] 9

Guaranteed strateqy ensures

If measurement error is too large
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Feedback control under complete measurements

State {T,x} Target set
<_ \ Q—\N.

T T1 T2 )
W) =T[v,u]T[n, 0T (0,8 M

limit case Wy(t] — W[t], N — o, ony=max|ti;;—7Ti—0
1

Wit] — invariant set_>
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Feedback control under Complete Measurements

STATE: {t,x}
INVARIANT SET: W[t] = {x: ¥o(-), Ju(-) — x(0) € M}
CONTROLS: OPEN-LOOP

Invariant set  W|[t] =T [t, 0| M

This is a linearmap 7 : ‘M Ti — q\_\?T calculated

through convex analysis
Under Matching Conditions:
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TO FIND THE FEEDBACK CONTROL STRATEGY WE NEED THE
INVARIANT SET !// THE CONTROL THEN ARRIVES FROM

CONDITION:
u,v

NOTE THAT HERE WE HAVE TO SOLVE PROBLEMS IN
FINITE TIME

THIS IS MUCH HARDER THAN SOLVING STABILIZATION
PROBLEMS

dt

v

U(t,x) = A: : Bmxﬁ dd*(x(t), W)

(compare Value functions with control Liapunov functions:
for linear-quadratic control problems in infinite time the Liapunov

function 1s a value function)
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The invariant sets 7/ are
the backward reachability sets from set M

If W/ |7| is calculated through open loop controls
W,|t] is calculated through closed-loop controls, then
Under Matching Conditions we have:

Without Matching Conditions we have:

Wit] # WelT]
Wit =Tt, M
Wit =Tlv ... T, 8, Wyt = Welt)(N — o);
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Feedback control under Complete Measurements
STATE: {t,x} NO matching conditions:

Here 7; are the points of DISCRETE MEASUREMENTS.

Wylt] =Tl[t,t1]...T[ty,8)M CONTROLS: piecewise open-loop
(compare with model-predictive controls)

Limit case (with N — oo, 6y = max |t;1; —T;| = 0) :

Wy (1] — W.[1] - INVARIANT SET
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Output Feedback Control

(Incomplete Measurements)

.:\Lil/ T O

measurement for
)/ somenoise §
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Output Feedback Control Incomplete Measurements

STATE: {7, X|[1]},

Under Matching Conditions
Invariant Set:
Wt] ={X : Ve X,Y(), Fu(-) x(t) = x(V) € My, C M} under

on-line state constraint
y(t) = G(t)x(t) +&(t) € R(¢)
Calculated through CLOSED-LOOP CONTROLS

Wit] = U{X}, X =x+Q

with  W[t] = T[t, 9] M
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= Qutput Feedback Control Incomplete Measurements

STATE: {t,X|t]}, NO matching conditions

DISCRETE measurements: Wy|[t| = Tj[t,T1]... Ti[tn, O] M

CONTINUOUS measurements: Limit case (with N — oo, oy — 0)
Win|[t] = W[t] - INVARIANT SET

FROM PIECEWISE-CONTINUOUS SOLUTIONS TO FEEDBACK
CONTROL SOLUTION STRATEGY
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REDUCTION to FINITE-DIMENSIONAL SCHEMES

To find feedback controls we need to calculate

d(x, W [t]) — under complete measurements (finite-dimensional scheme)
hy (X[t], W][t]) — under incomplete output measurements

(in general - an infinite-dimensional scheme)

For linear systems with convex constraints we have:
Wielt] = W, [t]

Then, instead of h (X|t], W[t]) we need h (X|t], W.|t])
Under Matching Conditions :

Wielt) = Welt] = W]

This may be exactly calculated through finite-dimensional schemes
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Selection of control strategy

. dhy (X[t], W)

controlled directions

selected direction

U(T,x) = u : <0

dt
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EQUATIONS FOR THE SYNTHESIZED SYSTEM
The state of the system is {X[t] = x* () + Q[t]}

We use the support function for set
Qfr] = 0(t,1) = p(l | Qt]) = max{(l,x) | x € Qlt]}
The evolution equations for x*(¢), Q|t] are

D wANvEANURVU
0
PULRID — (s,1,Q11], Z]1])

This a PDE for the support function dp(/ | Q[t]).

(Z[t] is the measurement set).
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IF measurements are DISCRETE, at instants {t;}, then

b.?TwL — D?Tl — O_ M N?I'L

op(l | Q) /9 = p(I|B(1)Qr)), 1 € [T, Ti1), Qto] = X°.

Between measurements we calculate ”ordinary” reach set
without state constraints.

Support function p(/ | Q[¢t]) may be calculated exactly through
Duality Theory of Convex Analysis
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But we need effective calculation for Large Dimensions

This can be reached through
ELLIPSOIDAL or POLYHEDRAL CALCULUS !
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III. The Solution Through Ellipsoidal Techniques
An ellipsoid (P > 0)

E(p,P)={x: (x—p,P~ (x—p)) <1}

Its support function
p(I|E(p,P) = (I,x) + (1,P1)"/?

The target set M = E(m,M)
Hard bounds:

x(to) € E(x°,X°), u € E(p(t),P(t)),

f(t) € E(q(1),0()), 6(z) € E(0,R(r)).
Here M =M’ >0, X° = X% > 0, and
P(t) =P(t) >0, Qt) = Q[t)’ >0, R(t) = R'(t) > 0.
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Stage 1. Solve Problem GSE : find information set W/[].

This actually 1s the reach set of system
Wwe C(1)E(q(1), Q). wito) € E(x",X7),
under on-line state constraint
z(t)—H(t)w(t) € E(0,R(1)), t € [to,T],

with given z*(7) .

We present ‘W/[1] through parametrized
external ellipsoids!

Wit € E(wy (1), W, (1) |oo(1)),
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Exact ellipsoidal representations of X |t]

Denote parameters
X (1) = %), 8C) 1 x-(8) = {vr (), 81(-), 82()}
E(xe, X+ (7)) = E(xe, X4 (1) %+ (7))5 E(xe, X (7)) = E(xe, X (1)1 % (7))

Then we have

Theorem. The following representation is true

4 B X @) (0) § = X1 = ] ExeXe (1) |4 (1)

79



To Specify control strategy U (t, X, W)
we need value function

Q\Aduuﬂu §\V — §+Auﬂu Q\ﬁ\v
but use an ellipsoidal approximation
Q\MN\A\FR“ ..S\v — &ANARA\QUVD' Aavvu NAS\AHVQS\I Advv

X(1) € E(x(1), X1 (1), W] 2 Ew(1),W-_(1)
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Complete measurements
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Incomplete measurements

@ - - > Safety zone:

B, Axe Sv +X9() = X (1)

/ / \

7\ 7\ 7\

W@\m@ set mﬁ\oﬂsm&@.os set Total safety set

Q@) — ®o
©
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