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Abstract—New technologies, such as control in quantum
systems, may require that the control would act on a very small
time horizon. Another requirement is that the control should
be designed in a closed-loop form. A possible response to this
demand is the use of fast controls [1]. They are introduced
as bounded approximations of generalized impulse controls
(belonging to the class of higher-order distributions).

I. IDEAL ZERO-TIME CONTROLS

Consider a linear differential equation in distributions:

ẋ(t) = A(t)x(t) +B(t)u + f (α) − f (β),

x ∈ R
n, t ∈ [α, β],

with k times continuously differentiable matrices A(t) ∈
R

n×n, B(t) ∈ R
n×m. The terms f (α) and f (β) are two

distributions [2], [3] from D∗

k,n[α, β] concentrated in points

tα and tβ respectively.

Recall that the space D∗

k,m consists of k times differ-

entiable functions ϕ(t) : [α, β] → R
m with support set

contained in [α, β], endowed with a norm

G [ϕ] = max
t∈[α,β]

γ[γ0(ϕ(t)), . . . , γk(ϕ
(k)(t))].

Here γk, γ are some finite-dimensional norms in vector

spaces Rm and R
k+1 respectively. The norm G [ϕ] defines a

conjugate norm G ∗[u] in the space D∗

k,m[α, β].
The generalized control u(t) is chosen from the space

D∗

k,m[α, β] and must ensure the existence of distribution

x(t) ∈ D∗

k−1,n[α, β] with support on [tα, tβ ]. This control

may be represented in the form [4]

u(t) =
∑k

j=0

dj+1Uj(t)

dtj+1
, Uj ∈ BV [tα, tβ].

Here BV [tα, tβ ] is a space of functions U(t) of bounded

variation.

In [5], [6] it was shown that a completely controllable

linear system may be steered from one state to another in

fixed time by an ordinary impulse control (k = 0)

u(t) =
∑N

i=1
uiδ(t− τi),

where the number of impulses N ≤ n. Here the points τi are
time moments when the impulses are applied to the system.

For k > 0 the controls include, apart from delta-functions,

higher-order derivatives of delta-functions, which extends

capabilities of the control. In particular, for m ≥ n − 1 a
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completely controllable linear system may be steered from

one state to another by the control of type

u(t) =
∑m

j=0
ujδ

(j)(t− τ). (1)

in zero time.

The problem of feedback control in the class of dis-

tributions is solved using Hamilton–Jacobi–Bellman type

variational inequalities [1].

II. FAST CONTROLS

Control (1) is an “ideal” one. Bounded functions ap-

proximating (1) are known as fast controls, since they are

physically realizable and may steer a system to a given state

in arbitrary small time [1]. Such controls may be found, for

example, in the following form:

u∆(t) =
∑m

j=0
uj∆

(j)
hj

(t− τ), (2)

where ∆
(j)
h (t) approximate the derivatives of delta-function:

∆
(0)
h (t) = h−1

1[0,h](t),

∆
(j)
h (t) = h−1

(

∆
(j−1)
h (t)−∆

(j−1)
h (t− h)

)

.

Here arises the problem of how to choose the parameters

of control (2) — the coefficients hj and vectors uj . These

parameters should be chosen due to physical requirements

on the realizations of control.

III. DISCONTINUOUS APPROXIMATIONS

First, we consider fast controls with various restrictions:

1) bounded time of control:

max
j

{(j + 1)hj} ≤ H ;

2) hard bounds on control:

‖u∆(t)‖ ≤ µ;

3) separate hard bounds on approximations of generalized

functions of all orders included in the control:

‖u∆,j(t)‖ ≤ µj ,

u∆,j(t) = uj∆
(j)
hj

(t− τ).

The indicated restrictions lead to the problems of moments

of similar type. For example, for an approximation of the

derivative δ(n)(t) such a moment problem has the following

solution:

∆n
h(t) =

1
4 (−1)nn!

(

2
h

)(n+1)
signUn(t/h), (3)
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Fig. 1. Approximations of δ(n)(t) (Part I)

where Un(t) is the Chebyshev polynomial of the second

kind:

Un(t) = cos(n arccos t).

The approximation (3) is piecewise constant (and hence

discontinuous), equal to ± 1
4n!

(

2
h

)(n+1)
between Chebyshev

points tk = h cos πj
n+1 , j = 0, . . . , n+ 1.

A. Haar Series

Another promising approach is to represent fast controls

in terms of Haar series [7], since the basic element (wavelet)

of this orthogonal system of functions is essentially an

approximation of δ′(t):

χ(k)
n (t) =











√
2n, t ∈

(

2k−2
2n+1 ,

2k−1
2n+1

)

;

−
√
2n, t ∈

(

2k−1
2n+1 ,

2k
2n+1

)

;

0, otherwise;

n = 0, 1, . . . , k = 1, . . . , 2n.

IV. SMOOTH APPROXIMATIONS

After that, we consider continuous or smooth

approximations. To do this, we impose the bound on k-th

derivative of the approximation ‖u(k)
∆ (t)‖ ≤ µ. It turns out

that a k times smooth approximation of δ(n)(t), ∆n
h,k(t), is a
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Fig. 2. Approximations of δ(n)(t) (Part II)

normalized (k + 1)-fold integral of ∆n+k+1
h (t). Here k =

−1 corresponds to discontinuous approximations∆n
h(t), and

k = 0 leads to continuous (but not smooth) approximations.

Approximations ∆n
h,k(t) are piecewise polynomials of or-

der k, with k−1 derivatives continuous at the junction points.
The coefficients of these polynomials may be calculated

recursively by explicit formulae.

V. EXAMPLES

In Figs. 1, 2 we present our approximations of δ(t) and

its derivatives, with various degrees of smoothness.
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