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Abstract— This paper indicates effective solution schemes for
problems of closed-loop control for oscillating systems ofhigh
dimensions subjected to unknown but bounded disturbances.
These schemes are based on using internal ellipsoidal approxi-
mations of weakly invariant solvability sets and produce effec-
tive numerical algorithms. The text is accompanied by computer
animation and numerical simulations based on ellipsoidal tools
for calculating reach sets.

I. I NTRODUCTION

Within the range of important applied control problems
under present investigation is the one of feedback control
of oscillating systems of high dimensions. The given paper
indicates effective schemes for solving such problems for
systems subjected to unknown but bounded disturbances
including those that may also be in resonance with system.
The selected approach is based on constructing weakly
invariant sets (similar to “Krasovski bridges”) which are
then further used to design the specific solution strategies
and also to investigate the damping possibilities of the
controls under various types of loads and disturbances. The
text is accompanied by computer animation and numerical
simulations based on ellipsoidal tools for calculating reach
sets. This allows to tackle problems of realistically high
dimensions and solve them in limited time.

II. T HE PROBLEM

The problem we consider in this paper is to design a
feedback synthesizing strategy to damp the oscillations of
a suspended chain of a finite number of loaded springs by
applying a bounded control force to the lower end of the
chain (Fig. 1). The chain must be led to an equilibrium in
given finite time, so that this isnot a problem of asymptotic
stabilization.

Apart from the springs, the chain also includes given loads
attached in between the springs. We assume that the masses
of springs are negligibly small compared to those of the
loads. The upper end of the chain is rigidly attached to a
fixed suspension. Then the oscillations of the chain could be
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described by the following system of second-order ODEs:










m1ẅ1 = k2(w2 − w1) − k1w1,

miẅi = ki+1(wi+1 − wi) − ki(wi − wi−1),

mN ẅN = −kN (wN − wN−1) + u(t),

(1)

when t > t0. Here N is the number of springs which
are numbered from top to bottom. The loads are numbered
similarly, so that thei-th load is attached to the lower end
of the i-th spring.wi is the displacement of thei-th load
from the equilibrium,mi is the mass of thei-th load,ki is
the stiffness coefficient of thei-th spring. The gravity force
enters (1) implicitly through determining the lengths of the
springs at the equilibrium.

The initial state of the chain at timet0 is given by the
displacementsw0

i and the velocities of the loadṡw0
i :

{

wi(t0) = w0
i ,

ẇi(t0) = ẇ0
i .

The controlu(t) is a scalar taking values from a given
interval P = [umin, umax] which defines thehard bound,
or geometric constrainton the control. Thus the absolute
value of the control may be bounded by valueµ > 0: P =
[−µ, µ], or the control may be applied just in one direction
(only down:P = [0, µ], or only up:P = [−µ, 0]).

The equations (1) may be interpreted as a spatial dis-
cretization of a one-dimensional wave equation for a string
with fixed left end and a control force applied to the free
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Fig. 1. The chain of springs to be controlled in the equilibrium state (left)
and in an arbitrary state (right)



right end:

ρ(ξ)wtt(t, ξ) = [E(ξ)wξ(t, ξ)]ξ, t > t0, 0 < ξ < L;

w(t, 0) = 0, wξ(t, L) = E−1(L)u(t), t > t0;

w(t0, ξ) = w0(ξ), wt(t0, ξ) = ẇ0(ξ), 0 6 ξ 6 L.

(Herew(t, ξ) is the displacement of pointξ at time t; each
pointξ of the string is characterized by Young modulusE(ξ)
and mass densityρ(ξ).) Therefore, the presented approach
may be also useful for investigating problems of boundary
control for the wave equation.

The goal of the control is to steer the system to the
equilibrium in given finite time1. In other words, one has to
specify a closed-loop feedback control strategyu(·, ·), which
steers the system (1) from any given initial state to the origin
at given timet1: w(t1) = 0, ẇ(t2) = 0.

In the absence of uncertainty the open-loop and feedback
controls achieve the same result, i.e. the problem is solvable
in UOL if and only if it is solvable in UCL (see [3]).
However, if the disturbances are present in the system, a
feedback control may yield a significantly better result by
employing additional information which arrives during the
control process.

Before providing an accurate definition ofUCL and for-
mulating the problem, we rewrite the original system (1)
in the normalized matrix form. To do this, we introduce
an extended state vectorx ∈ R

n, n = 2N , defined by
(x1, . . . , xN ) = w, (xN+1, . . . , x2N ) = ẇ. Then

ẋ(t) = Ax(t) + bu(t), x(t0) = x0 =

(

w0

ẇ0

)

, (2)

A =

(

0 I

−M−1K 0

)

, b = (0, . . . , 0, m−1
N )T ,

M =







m1

. . .
mN






,

K =















k1 + k2 −k2

−k2 k2 + k3 −k3

. . .
. . .

. . .
−kN−1 kN−1 + kN −kN

−kN kN















.

Note that the controllability property of the system de-
pends on at which of the loads we apply the control force.
For example, ifmi ≡ m, ki ≡ k, and the control force is
applied ton-th load, then the system is controllable if and
only if gcd(n, 2N +1) = 1. If the force is applied to the last
N -th load, then the system is always controllable regardless
of the values of masses and stiffness coefficients.

We now pass to a rigorous definition of the desired control
strategy.

Definition 1: A closed-loop control is a multi-valued map-
ping U (t, x), upper semicontinuous inx, measurable int,

1The problem of fully stopping a linear system with minimum intensity
of control was considered in [1], [2] and by many other authors.

with non-empty convex compact values inP. The class of
closed-loop controls is denoted asUCL.

Controls of the specified class ensure the existence and
extendability of solutions to the differential inclusion [4]

ẋ(t) ∈ Ax(t) + bU (t, x), t > t0 (3)

arising by substituting the feedback controlU (t, x) into the
right-hand side of (2). Although the original system is linear
in x, the closed-loop system (3) is not, due to the nonlinear
term U (t, x). The effectiveness of using such a class of
strategies is well known.

Problem 1: Find thesolvability domainW [t0] ⊆ R
n and

a feedback controlU (t, x) such that all trajectories of (3)
which originate inW [t0] at timet0 arrive at the equilibrium
at time t1 (that is,x(t1) = 0).

The solvability domainW [t0] is also known as theback-
ward reach set(this is the set of all points reachable from
the equilibrium in backward time).

This problem can be naturally extended to systems with
uncertainty. Here we consider a problem of guaranteed
control synthesis: the control has to damp the springs despite
the unknown disturbances. We assume the admissible range
of the disturbances to be known, thus following a set-
membership description of these.

In particular, such approach allows taking into account the
modeling errors. For example, if the upper end of the chain
is not fixed rigidly enough, then some additional terms will
arise in the first equation of (1). The physical parameters
— masses and stiffness coefficients may be also known with
certain errors in (1) which could also be taken to be bounded.
One may similarly take into account the nonlinearities in
describing the stiffness coefficients.

The system with disturbances is as follows










m1ẅ1 = k2(w2 − w1) − k1w1 + v1,

miẅi = ki+1(wi+1 − wi) − ki(wi − wi−1) + vi,

mN ẅN = −kN (wN − wN−1) + u + vN ,

(4)

Here the disturbing forcevi is applied to thei-th load. As
the control, the disturbance is also taken to be restricted by
a hard boundv(t) ∈ Q, whereQ is a non-empty convex
compact fromR

N .
System (4) allows standard form

ẋ(t) = Ax(t) + bu(t) + Cv(t), x(t0) = x0, C =

(

0
M−1

)

,

with matricesA, b and M defined in (2). Note that the
disturbance enters only half of the equations.

Under feedback controlU (t, x) ∈ UCL the system be-
comes a differential inclusion

ẋ(t) ∈ Ax(t) + bU (t, x) + CQ(t), t > t0, (5)

and again its solutions exist on the interval[t0, t1] due to
properties of classUCL.

Due to the disturbances, it may be impossible to guarantee
exact damping of the chain. Instead we require that the
control steers the system into a prescribedε-neighborhood
of the equilibrium.



Problem 2: For a givenε > 0 find the solvability domain
Wε[t0] ⊆ R

n and a feedback controlUε(t, x) ∈ UCL, such
that all trajectories of (5) starting inWε[t0] at timet0 would
satisfy‖x(t1)‖ 6 ε.

The setWε[t0] is a weakly invariant set relative to the
target. Such sets are crucial for constructing exact solution
strategies or their approximations (for example, by using
their ellipsoidal approximations as indicated below).

The last problem (2) may be also interpreted as a differ-
ential game [5]–[7].

III. T HE SOLUTION

A. System without Uncertainty

In this Section we first consider the system in the ab-
sence uncertainty (Problem 1). Although this problem does
not have any optimization criterion, in order to apply the
dynamic programming techniques we require the control to
minimize the deviation from the equilibrium state at the final
time t1. In particular, if this deviation is zero, then the chain
is in the equilibrium and the control solves Problem 1. We
introduce a correspondingvalue function

V (t, x) = min
U ∈UCL

max
x(·)∈XU (·)

‖x(t1)‖
2
. (6)

HereXU (·) is the trajectory tube of solutions to the differ-
ential inclusion (3) with fixed closed-loop controlU (t, x)
and initial conditionx(t) = x.

The value function actually depends not only on the initial
state(t, x), but also on the final timet1 and the terminal
functional, which is in our caseϕ(x) = ‖x‖2 = d2(x, {0}).
Extended notation which reflects this dependence is

V (t, x) = V (t, x; t1, ϕ(·)) = min
U ∈UCL

max
x(·)∈XU (·)

ϕ(x(t1)).

Using the above notation we formulate theprinciple of
optimalityas a semigroup property for a generalized dynamic
system

V (t, x; t1, ϕ(·)) = V (t, x; τ, V (τ, ·; t1, ϕ(·))) (7)

for all t 6 τ 6 t1. From (7) it follows that the pair(t, x)
contains all information about state of the system, and thus
we can write down the fundamental equation of dynamic
programming.

Theorem 1:The value functionV (t, x) is a classical so-
lution to the Hamilton–Jacobi–Bellman (HJB) equation

Vt + min
umin6u6umax

〈Vx, Ax + bu〉 = 0, t < t1, (8)

with initial condition V (t1, x) = ‖x‖
2.

The proof is based on using convex analysis [11] (see [3]).
The solution of the Problem 1 may be expressed through

the value function if the latter is known. The solvability
domain is then the zero level set of the value function:

W [t] = {x | V (t, x) 6 0}, (9)

and the optimal control synthesis is the set of minimizers in
(8):

U
∗(t, x) = Arg min

umin6u6umax

〈Vx, bu〉 =

= Arg min
umin6u6umax

Vx2N
u =







umin, Vx2N
> 0;

umax, Vx2N
< 0;

[umin, umax], Vx2N
= 0.

Note that the control only takes extreme valuesumin, umax,
except for statesx inside the solvability domainW [t] and
some degenerate points outsideW [t] whereVx2N

= 0.
For simplifying numerical procedures note that the value

function may be expressed through the solvability domain
W [t]. Applying convex analysis techniques we get (see [3]):

V (t, x) = d2(e(t1−t)Ax, e(t1−t)A
W [t]). (10)

This may be further detailed as

d2(e(t1−t)Ax, e(t1−t)A
W [t]) =

= max
ℓ∈Rn

〈ℓ, x〉 − ρ(ℓ | W [t]) −
1

4

∥

∥

∥e(t−t1)Aℓ
∥

∥

∥

2

=

=
〈

ℓ0, x
〉

− ρ
(

ℓ0
∣

∣ W [t]
)

−
1

4

∥

∥

∥e(t−t1)Aℓ0
∥

∥

∥

2

, (11)

where ρ(ℓ | W [t]) is the support function ofW [t] in the
directionℓ (see [11]):

ρ(ℓ | W [t]) = max
x∈W [t]

〈ℓ, x〉, (12)

and ℓ0 is the maximizer which is unique due to strong
convexity of the function being maximized. For the present
problem the support function (12) is

ρ(ℓ | W [t]) =

∫ t1

t

[umax ·(s2N (τ))+ +umin ·(s2N (τ))−] dτ,

(13)
wherea− = min {a, 0}, a+ = max {a, 0}, and s(t) is the
solution to theadjoint equation

ṡ(t) = −AT s(t), s(t1) = ℓ. (14)

Then the optimal feedback control is

U
∗(t, x) =







umin, ℓ0
n > 0;

umax, ℓ0
n < 0;

[umin, umax], ℓ0
n = 0.

(15)

Theorem 2:The feedback control defined by (11)–(15),
belongs to the classUCL of admissible closed-loop controls,
and with the solvability domain defined by its support
function (13) constitutes a solution to Problem 1.

The hardest computational part of the above solution is the
optimization problem in (11). The latter may be solved much
simpler if the exact solvability domainW [t] is replaced by
an approximationZ [t] of a fairly simple structure.

We will further useellipsoidsto approximate the solvabil-
ity domain:

E (q, Q) =
{

x ∈ R
n

∣

∣

〈

x − q, Q−1(x − a)
〉

6 1
}

.

Hereq is the center of the ellipsoid, andQ is its configura-
tion matrix (its eigenvectors and eigenvalues determine the



orientation and size of ellipsoid). The support function of
ellipsoid isρ( ℓ | E (q, Q)) = 〈ℓ, q〉 + 〈ℓ, Qℓ〉

1

2 .
For the purposes of control synthesis, the following prop-

erty of weakly invariant sets is important [3]:
Theorem 3:Let Z [t] be a weakly invariant set-valued

mapping, such thatρ(ℓ | Z [t]) is differentiable in t

for each ℓ ∈ R
2N . Then the function Z(t, x) =

d2(e(t1−t)Ax, e(t1−t)A
Z [t]) satisfies differential inequality

min
umin6u6umax

dZ(t, x(t))

dt
=

= Zt + min
umin6u6umax

〈Zx, Ax + bu〉 6 0. (16)

As a consequence of (16), for the closed-loop control
defined as a set of minimizers in (16)

UZ (t, x) = Arg min
umin6u6umax

〈Zx, bu〉 (17)

the following property holds: if the initial pointx(t0) of
trajectory of differential inclusion (3) is insideZ [t0], then
the rest of trajectory also lies inside the tubeZ [t0]. This
is true because the distance fromx(t) to Z [t] is a non-
increasing function.

Hence, if an internal approximation of the solvability
domain is weakly invariant, then the closed-loop control
(17) damps the chain from all initial states inZ [t0]. The
control may be calculated using formulae (11)–(15) with
W [t] replaced byZ [t]. Such feedback strategy may be
interpreted as “aiming” at the tubeZ [t].

Consider the following differential equations for
the parameters of internal ellipsoidal approximation
E (x∗(t), X−(t)) [15]–[17]:

ẋ∗(t) = Ax∗(t) + bp, x∗(t1) = 0; (18)

Ẋ−(t) = AX−(t) + X−(t)AT +

X
1

2

−
(t)S(t)(bPbT )

1

2 + (bPbT )
1

2 ST (t)X
1

2

−
(t), X−(t1) = 0;

S(t)P
1

2 BT s(t) = λ(t)X
1

2

−
s(t), ST (t)S(t) = I.

Here p = 1
2 (umin + umax) and P = 1

4 (umax − umin)
2 are

the parameters of ellipsoidE (p, P ) = P = [umin, umax].
The ellipsoidal approximation defined in (18) is tangent

to the solvability domain in the direction determined by the
adjoint system (14) (which in its turn depends on direction
ℓ ∈ R

2N ):

ρ(s(t) | E (x∗(t), X−(t))) = ρ(s(t) | W [t]). (19)

It follows from (19) that the union of ellipsoidal approxima-
tions over all directionsℓ ∈ R

2N is exactly the solvability
domain:

W [t] =
⋃

{E (x∗(t), X−(t)) | ‖ℓ‖ = 1}.

For ellipsoidal approximation, the maximizingℓ0 in (11)
may be calculated as

ℓ0 = 2λ(X− + λF )−1(x − x∗), (20)

F = e(t−t1)A
T

e(t−t1)A,

whereλ is the unique non-negative root of
〈

(X− + λF )−1(x − x∗), X−(X− + λF )−1(x − x∗)
〉

= 1,

(21)
or ℓ0 = 0 if (21) does not have positive roots.

It is possible to save computation time by avoiding solving
the equation (21) if in the definition ofZ(t, x) one uses the
metric defined by the matrixX−(t) (see [18]).

B. System with Uncertainty

The solution presented in the previous paragraph may be
extended to the case of unknown disturbances (Problem 2).
Below we provide this solution, highlighting the changed
caused by the presence of uncertainty.

The value function is again defined by (6), withXU (·)
being the solution tube of the differential inclusion (5) with
fixed feedback controlU (t, x) and initial statex(t) = x.

The value function satisfies the principle of optimality
(7), which allows to formulate the fundamental equation of
dynamic programming. In general case, the value function
here is not differentiable everywhere, but it satisfies the
dynamic programming equation in the sense of directional
derivatives which do exist since the value function is convex2

Theorem 4:The value functionV (t, x) is a solution to
the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation

Vt + min
umin6u6umax

max
v∈Q

〈Vx, Ax + bu + Cv〉 = 0 (22)

t < t1, with initial condition

V (t1, x) = (max {‖x‖ − ε, 0})
2
.

Note that the HJB equation (8) is a particular case of (22)
with Q = {0}.

The solvability domainW [t] is a zero level set of the
value function (9). Unfortunately, unlike the problem without
uncertainty it is not possible to express the value functionvia
the solvability domain, as in (10). However, for the purposes
of control synthesis the following estimate is sufficient [3]:

V (t, x) 6 W (t, x) = d2
(

e(t1−t)Ax, e(t1−t)A
W [t]

)

.

If we substitute this estimate into the HJBI equation in-
stead of the value function, we get a differential inequality
(cf. (16))

min
umin6u6umax

max
v∈Q

dW (t, x)

dt
= Wt+

+ min
umin6u6umax

max
v∈Q

〈Wx, Ax + bu + Cv〉 6 0. (23)

We define the feedback strategyUW (t, x) as the set of
minimizers in (23):

UW (t, x) = Arg min
umin6u6umax

〈

∂

∂x
d2

(

e(t1−t)Ax, e(t1−t)A
W [t]

)

, Bu

〉

. (24)

2One may also interpret the value function as a generalized solution to
the HJBI equation — viscosity solutions introduces by M. G. Crandall and
P.-L. Lions [20], [21], min-max solutions by A. I. Subbotin [22].



If the solvability domain is known, the control synthesis (24)
may be calculated using (15), (11).

Equations (23), (24) will be true if one replaces the
solvability domain W [t] with any weakly invariant set-
valued mapping. Among them there is an internal ellipsoidal
approximationE (x∗(t), X−(t)) with parameters determined
by the following ODEs [15]:

ẋ∗(t) = Ax∗(t) + bp + Cq, x∗(t1) = 0;

Ẋ−(t) = AX−(t) + X−(t)AT−

−π(t)X−(t) − π−1(t)CQCT +

X
1

2

−
(t)S(t)(bPbT )

1

2 + (bPbT )
1

2 ST (t)X
1

2

−
(t),

X−(t1) = ε2I;

S(t)P
1

2 BT s(t) = λ(t)X
1

2

−
s(t), ST (t)S(t) = I;

π(t) =

〈

s(t), CQCT s(t)
〉

1

2

〈s(t), X−(t)s(t)〉
1

2

.

We assume the set of possible values of disturbancesQ is
also an ellipsoidQ = E (q, Q). If this is not the case, it is
necessary to use ellipsoid circumscribed aroundQ.

For each directionℓ ∈ R
2N there exists timeτ such that

the ellipsoidal approximation is tangent to the solvability do-
main in directionℓ (i.e. (14) holds) on the interval[t1−τ, t1].
The closure of the union of all ellipsoidal approximations is
equal to the solvability domain:

W [t] = cl
⋃

{E (x∗(t), X−(t)) | ‖ℓ‖ = 1}.

After calculating the ellipsoidal approximation the control
synthesis is calculated using (15), (20), (21).

C. A Specific Disturbance

An important particular case of the problem with uncer-
tainty is when the disturbance only enters the last equation
of (4), i.e.v1 = . . . = vN−1 = 0, vN ∈ [vmin, vmax].

In this case it is easy to see that the HJBI equation (22)

Vt + min
umin6u6umax

max
vN∈[vmin,vmax]

〈Vx, Ax + b(u + vN )〉 = 0

is equivalent (i.e. has the same solution) to the following
HJB equation:

Vt + min
umin+vmax6u6umax+vmin

〈Vx, Ax + bu〉 = 0.

Therefore, this particular case reduces to a problem with-
out uncertainty withP = [umin + vmax, umax + vmin].

IV. EXAMPLES

The algorithm described above has been implemented
in Matlab. We have used the ellipsoidal toolbox [24] to
calculate the internal ellipsoidal approximations of the solv-
ability domain and introduce fairly simple algorithms for
on-line calculation of the desired control strategies. The
text is accompanied by computer animation and numerical
simulations for systems of realistically important dimension
subjected to various types of disturbances.

Fig. 2. Projections of solvability tubes for Example 1. Above: exact tubes,
below: ellipsoidal approximations. Red:P = [−1, 1], green:P = [0, 1],
blue: P = [−1, 0].

Example 1:The chain hasN = 10 springs with stiffness
coefficientski ≡ N and loadsmi ≡

1
N

. We consider three
different bounds on control:P1 = [−1, 1] (control force may
be applied both up and down),P2 = [0, 1] (only down) and
P3 = [−1, 0] (only up). There are no disturbances.

Fig. 2, upper plot, shows projections of the corresponding
solvability tubesW1[·] (red),W2[·] (green) andW3[·] (blue).
Note that, as expected,W1 is larger than the union ofW2

andW3. The tubes were calculated using (13), (14).
Fig. 2, lower plot, shows projections of ellipsoidal approx-

imations (for a specific directionℓ ∈ R
20) of the tubes above,

Ei ⊆ Wi. Although W2, W3 ⊆ W1, this inclusion is not true
for the ellipsoidal approximations. In fact, there are times
whenE1 does not even intersect withE2, E3.

Example 2:Consider a chain withN = 4 springs with
ki ≡ 1, mi ≡ 1. The lowest eigenfrequency of this chain is
ω0 ≈ 0,35. We introduce a disturbancev(t) = 0,5 sinω0t,
which is intended to “shake” the chain at the resonant
frequency. The control with hard boundP = [0, 1] (acting
only down) is to mitigate the disturbance and damp the chain.

Fig. 3 shows the disturbancev(t) (first plot) and the
history of‖x(t)‖ (second plot) when the control is turned off.
The amplitude of oscillations clearly grows with time. The
corresponding control (third plot) indeed effectively damps
the oscillations (see the trajectory of‖x(t)‖ in the fourth
plot).



−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
−0.5

0

0.5

v(
t)

 

 
Distrubance

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

10

20

30

||x
(t

)|
|

 

 
Uncontrolled ||x||

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0

0

0.5

1

u(
t)

 

 

Control

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

5

10

15

t

||x
(t

)|
|

 

 
Controlled ||x||

Fig. 3. Illustration for Example 2

V. CONCLUSIONS

This paper indicates worked out techniques for solving
problems of closed-loop control for oscillating systems of
high dimension subjected to unknown but bounded dis-
turbances. While using the approach of reachability and
weakly invariant sets (which also coincide with “Krasovski
bridges”), this paper indicates effective schemes for calcu-
lating closed-loop solution strategies. These are based on
using internal ellipsoidal approximations of weakly invariant
solvability sets and produce effective algorithmic schemes.
The computerized solution versions allow to test the effec-
tiveness of available closed-loop controls over various classes
of loads, disturbances and broad ranges of initial conditions.
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