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Abstract— This paper indicates effective solution schemes for described by the following system of second-order ODEs:
problems of closed-loop control for oscillating systems ohigh
dimensions subjected to unknown but bounded disturbances. myty = ka(wg —wy) — kyw,
These schemes are based on using internal ellipsoidal appiie o — e A S S
mations of weakly invariant solvability sets and produce efec- mit; = ki (Wigr = wi) = ki(wi —wiza), (1)
tive numerical algorithms. The text is accompanied by compter myiy = —ky(wy —wn_1) + u(t),
animation and numerical simulations based on ellipsoidal dols

for calculating reach sets. whent > ty,. Here N is the number of springs which

are numbered from top to bottom. The loads are numbered
similarly, so that thei-th load is attached to the lower end
of the i-th spring.w; is the displacement of théth load

Within the range of important applied control problemsrom the equilibrium,m; is the mass of thé-th load, k; is
under present investigation is the one of feedback contrtie stiffness coefficient of theth spring. The gravity force
of oscillating systems of high dimensions. The given papenters (1) implicitly through determining the lengths oé th
indicates effective schemes for solving such problems faprings at the equilibrium.
systems subjected to unknown but bounded disturbancesThe initial state of the chain at timg is given by the
including those that may also be in resonance with systerdisplacements)? and the velocities of the loads?:

The selected approach is based on constructing weakly
invariant sets (similar to “Krasovski bridges”) which are wi(to)
then further used to design the specific solution strategies

and also to investigate the damping possibilities of the . ) )
controls under various types of loads and disturbances. The' € controlu(t) is a scalar taking values from a given
text is accompanied by computer animation and numericlterval & = [tmin, tmax] Which defines théhard bound
simulations based on ellipsoidal tools for calculatingctea O 980metric constrainon the control. Thus the absolute
sets. This allows to tackle problems of realistically hign/@lue of the control may be bounded by vajue- 0: & =
dimensions and solve them in limited time. [—u, p], or the control may be applied just in one direction
(only down: &2 = [0, ], or only up: & = [—u, 0]).

The equations (1) may be interpreted as a spatial dis-
cretization of a one-dimensional wave equation for a string

The problem we consider in this paper is to design aith fixed left end and a control force applied to the free
feedback synthesizing strategy to damp the oscillations of
a suspended chain of a finite number of loaded springs by , y
applying a bounded control force to the lower end of the / /
chain (Fig. 1). The chain must be led to an equilibrium in
given finite time, so that this isot a problem of asymptotic
stabilization.

Apart from the springs, the chain also includes given loads
attached in between the springs. We assume that the masses
of springs are negligibly small compared to those of the
loads. The upper end of the chain is rigidly attached to a
fixed suspension. Then the oscillations of the chain could be
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right end: with non-empty convex compact values 4. The class of
closed-loop controls is denoted @% .

p(Ewu(t, §) = [E(Qwe(t, )], t>to, 0<E<L; Controls of the specified class ensure the existence and
w(t,0) =0, we(t,L)=E" (L)u(t), t > to; extendability of solutions to the differential inclusiod] [
w(to, &) = w’(€),  wi(to, &) =u’(€), 0<E< L B(t) € Ax(t) + b (t,x), t>to 3)

(Herew(t, &) is the displacement of poirt at time¢; each arising by substituting the feedback contél(t, =) into the
point£ of the string is characterized by Young moduki&)  right-hand side of (2). Although the original system is ine
and mass density(¢).) Therefore, the presented approachn z, the closed-loop system (3) is not, due to the nonlinear
may be also useful for investigating problems of boundarierm % (¢,xz). The effectiveness of using such a class of
control for the wave equation. strategies is well known.

The goal of the control is to steer the system to the Problem 1:Find thesolvability domainy [t,] € R™ and
equilibrium in given finite timée*. In other words, one has to a feedback contro¥ (¢, z) such that all trajectories of (3)
specify a closed-loop feedback control stratedy -), which ~ which originate in#[to] at timet, arrive at the equilibrium
steers the system (1) from any given initial state to theiorig at timet; (that is,z(t;) = 0).
at given timet1: w(t1) = 0, w(tz) = 0. The solvability domair# [ty] is also known as thback-

In the absence of uncertainty the open-loop and feedbaward reach sefthis is the set of all points reachable from
controls achieve the same result, i.e. the problem is stvathe equilibrium in backward time).
in %o, if and only if it is solvable in%c. (see [3]). This problem can be naturally extended to systems with
However, if the disturbances are present in the system,U&certainty. Here we consider a problem of guaranteed

feedback control may yield a significantly better result byzontrol synthesis: the control has to damp the springs tespi
employing additional information which arrives during thethe unknown disturbances. We assume the admissible range

control process. of the disturbances to be known, thus following a set-

Before providing an accurate definition @, and for- membership description of these.

mulating the problem, we rewrite the original system (1) In particular, such approach allows taking into account the
in the normalized matrix form. To do this, we introduceModeling errors. For example, if the upper end of the chain

an extended state vectar € R", n = 2N, defined by IS not fixed rigidly enough, then some additional terms will
(21,...,a5) =w, (TN41,...,22n) = . Then arise in the first equation of (1). The physical parameters
— masses and stiffness coefficients may be also known with
@(t) = Ax(t) + bu(t), x(ty) =2° = (w2> ., (2) certainerrorsin (1) which could also be taken to be bounded.

w One may similarly take into account the nonlinearities in
4o < 0 I> b= (0,....0,m)7 describing the stiffness coefficients.

MK 0 N The system with disturbances is as follows
my miy = ka(we —wr) — kywy + v1,
M = ; miw; = kip1(wip1 —w;) — ki(wg —wi—1) +vi, (4)
my myiN = —ky(wy —wny-1) +u+ VN,
ki +ky  —ka Here the disturbing force; is applied to thei-th load. As

—ke  kat+ks  —ks the control, the disturbance is also taken to be restricted b
. a hard boundv(t) € 2, where 2 is a non-empty convex
compact fromRY,

—kn_1 kn-1+Ekn -k
e N System (4) allows standard form

—kn kn

. 0
Note that the controllability property of the system de<(t) = Axz(t) + bu(t) + Co(t), x(to) = 2°, C = (M1> :

pends on at which of the loads we apply the control force. ) ] .
For example, ifm; = m, k; = k, and the control force is With matrices A, b and M defined in (2). Note that the

applied ton-th load, then the system is controllable if anddisturbance enters only half of the equations.
only if ged(n, 2N +1) = 1. If the force is applied to the last Under feedback controt (t,z) € %c. the system be-
N-th load, then the system is always controllable regardle§@Mes a differential inclusion

of the values of masses and stiffness coefficients. &(t) € Ax(t) + b« (t,x) + CL2(t), t=ty, (5)
We now pass to a rigorous definition of the desired control o ) ) )
strategy. and again its solutions exist on the interyaJ,¢;] due to

properties of clas¥/, .
Due to the disturbances, it may be impossible to guarantee
exact damping of the chain. Instead we require that the
1The problem of fully stopping a linear system with minimunteimsity control ste_e_rs-the system into a prescriedeighborhood
of control was considered in [1], [2] and by many other auhor of the equilibrium.

Definition 1: A closed-loop control is a multi-valued map-
ping % (¢, x), upper semicontinuous im, measurable ir,



Problem 2: For a givens > 0 find the solvability domain and the optimal control synthesis is the set of minimizers in
#:[to] C R™ and a feedback contral. (¢, z) € %L, such (8):
that all trajectories of (5) starting i#.[to] at timet, would
satisfy ||z (t1)]| < e. % (tw)= Argmin (V;,bu) =

The set#.[ty] is a weakly invariant set relative to the Hmin S e

target. Such sets are crucial for constructing exact swoiuti . Ymin, Vaoy > 0;
strategies or their approximations (for example, by using ™~ Aigurfin Vit =4 Umax; Vaon <05
their ellipsoidal approximations as indicated below). e [tmnin, Umax],  Viay = 0.
The last problem (2) may be also interpreted as a diffeNote that the control only takes extreme valugs,, tmax,
ential game [5]-[7]. except for states: inside the solvability domair?[t] and
some degenerate points outsid€¢] whereV,,, = 0.
I11. THE SOLUTION For simplifying numerical procedures note that the value
_ _ function may be expressed through the solvability domain
A. System without Uncertainty #[t]. Applying convex analysis techniques we get (see [3]):
In this Section we first consider the system in the ab- V(t,z) = d?(et =04z o=y, (10)

sence uncertainty (Problem 1). Although this problem does _
not have any optimization criterion, in order to apply theThis may be further detailed as
dynamic programming techniques we require the control to

el o el _ 2(,(t1—t)A_ (t1—t)A _
minimize the deviation from the equilibrium state at the ffina d(e™ z,e V) =

time ¢1. In particular, if this deviation is zero, then the chain = max ((,2) — p(L | #[t]) — lue(t_tl)AéHQ _
is in the equilibrium and the control solves Problem 1. We eerr 4
introduce a correspondinglue function _ /40 _ 0 L AP
2 = ((0,2) = p( | w11) = e 4" @)
V(t,z) = 220 e (AN (6) where p(¢| #/[t]) is the support function of//[¢] in the
direction/ (see [11]):
Here 2 (-) is the trajectory tube of solutions to the differ- (1 wL) wx (0, 2) (12)
p = max 5I 3

ential inclusion (3) with fixed closed-loop contr@¥ (¢, x) zeW [t
and initial conditionz(t) = x.

The value function actually depends not only on the initi
state (¢, ), but also on the final time; and the terminal
functional, which is in our case(z) = ||z||* = d2(z, {0}).
Extended notation which reflects this dependence is

a1’;md ¢° is the maximizer which is unique due to strong
convexity of the function being maximized. For the present
problem the support function (12) is

ty
p(E118) = [t (s220()) s i (s2(r)) -] d,
t
V(tvx) = V(tv'r;tla (p()) = min max @(I(tl)) (13)
U EUer x(-)€ Loy (°) wherea_ = min {a,0}, a4 = max{a,0}, ands(t) is the
Using the above notation we formulate tpeinciple of solution to theadjoint equation

optimalityas a semigroup property for a generalized dynamic §(t) = —ATs(t),  s(ty) = L. (14)
system ’
Then the optimal feedback control is
V(t,l’;tl,g@(')) = V(t7$;T,V(T,-;t1,QD('))) (7) Umin, E?L > 0;
* _ 0 .

for all t < 7 < t;. From (7) it follows that the paitt, x) U (t,x) = Umax, £6L <0; (15)
contains all information about state of the system, and thus [tmin; tmax], €5, = 0.
we can write down the fundamental equation of dynamic Theorem 2:The feedback control defined by (11)—(15),
programming. belongs to the clasg of admissible closed-loop controls,

Theorem 1:The value functiorV (¢, z) is a classical so- and with the solvability domain defined by its support
lution to the Hamilton—-Jacobi-Bellman (HJB) equation  function (13) constitutes a solution to Problem 1.
The hardest computational part of the above solution is the
Vi + ug}jgu (Vo, Az +bu) =0, t<ti, (8) optimization problem in (11). The latter may be solved much
D simpler if the exact solvability domaiw [t] is replaced by
with initial condition V (t1,z) = HIHQ- an approximatiorZ’[t] of a fairly simple structure.
The proof is based on using convex ana|ysis [11] (See [3]) We WI” further useellipsoidsto approximate the solvabil-
The solution of the Problem 1 may be expressed throudhy domain:
the value function if the latter is known. The solvability £(q,Q) = {z R | <:C—q,Q_1(a: —a)) <1},

domain is then the zero level set of the value function: . o o .
Hereq is the center of the ellipsoid, ar@ is its configura-

W[t ={x | V(t,x) <0}, (9) tion matrix (its eigenvectors and eigenvalues determirme th



orientation and size of ellipsoid). The sulpport function ofvhere\ is the unique non-negative root of
ellipsoid isp(£ | &(q,Q)) = (¢, q) + (£, QL)*. 1 . 1 .
For the purposes of control synthesis, the following prop-<(X_ FAR) T (@ = 2), X (X4 AR) - )> :211’
erty of weakly invariant sets is important [3]: (21)
Theorem 3:Let Z[t] be a weakly invariant set-valued
mapping, such thatp(¢| 2°[t]) is differentiable in ¢
for each ¢ € R2YN. Then the functionZ(¢t,z) =
d? (et =04y o104 7[1]) satisfies differential inequality

or /° = 0 if (21) does not have positive roots.

It is possible to save computation time by avoiding solving
the equation (21) if in the definition of (¢, ) one uses the
metric defined by the matriX _(¢) (see [18]).

B. System with Uncertainty

) dZ(t, x(t)) _ ) _
min —_— = The solution presented in the previous paragraph may be
Umin KUK Umax dt .
_z . 7 4 b <0 (16 extended to the case of unknown disturbances (Problem 2).
— +ummg1;2umx< = Az +bu) 0. (16)  Bejoy we provide this solution, highlighting the changed
As a consequence of (16), for the closed-loop contralaused by the presence of uncertainty.
defined as a set of minimizers in (16) The value function is again defined by (6), with, (-)

being the solution tube of the differential inclusion (5)tlwi
fixed feedback contro¥/ (¢, z) and initial statex(t) = =.
] ] o ] The value function satisfies the principle of optimality
the following property holds: if the initial point(to) of (7) \yhich allows to formulate the fundamental equation of
trajectory of differential inclusion (3) is insid&[to], then  gynamic programming. In general case, the value function
the rest of trajectory also lies inside the tubi€lto]. This here s not differentiable everywhere, but it satisfies the
is true because the distance franit) to Zt] is a non-  gynamic programming equation in the sense of directional
increasing function. o _ derivatives which do exist since the value function is cofve
Hence, if an internal approximation of the solvability Theorem 4:The value functionV (,z) is a solution to

domain is weakly invariant, then the closed-loop controﬂhe Hamilton—Jacobi—Bellman—Isaacs (HJBI) equation
(17) damps the chain from all initial states #f[to]. The

control may be calculated using formulae (11)-(15) with Vi+  min mgc<Vz,Ax+bu+Cv> =0 (22
w[t] replaced byZ[t]. Such feedback strategy may be min SUS thmox VS

Uy (t,x) = Argmin (Z,,bu) 17)

Umin UK Umax

interpreted as “aiming” at the tub&t]. t < t1, with initial condition
the  parameters of ineal  elipsoidal Appreximation V(iz,2) = (max (] —,0)
P _ P Pp Note that the HIB equation (8) is a particular case of (22)
&(z™(t), X-(t)) [15]-[17]: with 2 = {0}.
P (t) = Az*(t) + bp, 2 (t1) = O; (18) The solvability domain# [t] is a zero level set of the

. B T value function (9). Unfortunately, unlike the problem vatht
. X_(t) = AX_(t) + X (t)lA T uncertainty it is not possible to express the value functian
XZ(4)S)(bPbT)2 + (bPbT)2ST () X2 (t), X_(t;)=0; the solvability domain, as in (10). However, for the purpose
1 1 of control synthesis the following estimate is sufficienk [3
S()PEBTs(t) = XXEs(t), ST(HS() =1 Y . H
_ 12 (ti—t)A (t1—t)A
Herep = L (umin + timae) ANAP = L(umax — tpn)? are 7 (%) SWlh)=d R O 0]
the parameters of ellipsoid(p, P) = & = [umin, Umax]- If we substitute this estimate into the HJBI equation in-

The ellipsoidal approximation defined in (18) is tangenstead of the value function, we get a differential ineqyalit
to the solvability domain in the direction determined by thgcf. (16))
adjoint system (14) (which in its turn depends on direction

Ny-
¢ € R2N: min max B2y
* Umin KUK Umax VEZL dt
ps(t) | 66 . X)) = (s | ). a8 T et s <0, (@)

Umin KUK Umax VEL

It follows from (19) that the union of ellipsoidal approxima ]
tions over all directiong € R2V is exactly the solvability ~ We define the feedback stratedyy (t,z) as the set of
minimizers in (23):

domain:
[t = J{E@ (1), X)) | el = 1}. %y (tx) = Argmin
For ellipsoidal approximation, the maximizir§ in (11) idQ (e(“*t)"‘x e(“*t)AW[t]) Bu). (a)
may be calculated as Oz ’ ’
00 = 2/\(X* + /\F)il(x - I*)v (20) 20ne may also interpret the value function as a generalizédiso to
F— e(t_tl)ATe(t_tl)A the HJBI equation — viscosity solutions introduces by M. Gar@lall and

P.-L. Lions [20], [21], min-max solutions by A. |. SubbotiaF].



If the solvability domain is known, the control synthesigd)2
may be calculated using (15), (11).

Equations (23), (24) will be true if one replaces the _
solvability domain #[t] with any weakly invariant set- =
valued mapping. Among them there is an internal ellipsoid:
approximation#’(z*(¢), X _(¢)) with parameters determined
by the following ODEs [15]:

[ S A S

i*(t) = Az™(t) +bp+ Cq, 2"(t1) =0;
X _(t)=AX_(t) + X_(1)AT—
—m(t)X_(t) — 7 1 ()CQCT +
X2 (H)S(8)(bPbT)F + (bPETYEST ()X (2),
X _(t) = €I,
S(HPBTs(t) = NO)X2s(t), ST(1)S(t) = I
(5(1),CQCTs(1))*
(s(t), X_(t)s(t))>
We assume the set of possible values of disturbarzéas
also an ellipsoid2 = &(q, Q). If this is not the case, it is
necessary to use ellipsoid circumscribed arowhd
For each directiof € RV there exists time- such that
the ellipsoidal approximation is tangent to the solvapitio-

main in directior¥ (i.e. (14) holds) on the intervéd; — 7, t4].
The closure of the union of all ellipsoidal approximatioss i

equal to the SOIVabi"W domain: Fig. 2. Projections of solvability tubes for Example 1. Aboexact tubes,
. below: ellipsoidal approximations. Red”? = [—1, 1], green:&” = |0, 1],
Wt = clU {&x" (@), X)) | 14 =1} blue: 2 = [—1,0].

After calculating the ellipsoidal approximation the carhtr

synthesis is calculated using (15), (20), (21). Example 1:The chain hasV = 10 springs with stiffness

C. A Specific Disturbance coefficientsk; = N and loadsm; = % We consider three

. . . different bounds on control?; = [—1, 1] (control force may
An important particular case of the problem with uncery,q applied both up and downy?, = [0, 1] (only down) and
tainty is when the disturbance only enters the last equatiof@3 = [~1,0] (only up). There 'are no,disturbances.
of (4), Le.vr = ... =vn—1 =0, 0N € [Umin, Vmax]- Fig. 2, upper plot, shows projections of the corresponding
In this case it is easy to see that the HJBI equation (zzlsolvability tubes#4 || (red), #5[] (green) and#4| (blue).
Vi + min max (Vy, Az + b(u +vy)) =0 Note that, as expected; is larger tha_m the union o¥%;
Umin SUKUmax VN € [Umin, Vmax] and #5. The tubes were calculated using (13), (14).
is equivalent (i.e. has the same solution) to the following Fig- 2, lower plot, shows projections of ellipsoidal approx
ion: imations (for a specific directiohe R2%) of the tubes above,
HJB equation: > © it
& C ;. Although #5, #3 C #4, this inclusion is not true
Vi + min (Vao, Az + bu) = 0. for the ellipsoidal approximations. In fact, there are tame

Umin T Vmax KUK Umax T VUmin

when &; does not even intersect withh, &;.

Therefore, this particular case reduces to a problem with- Example 2:Consider a chain withV = 4 springs with
out uncertainty With?” = [tmin + Umax, Umax + Umin]- k; =1, m; = 1. The lowest eigenfrequency of this chain is
wo ~ 0,35. We introduce a disturbancgt) = 0,5 sinwyt,
which is intended to “shake” the chain at the resonant

The algorithm described above has been implementégquency. The control with hard boun® = [0,1] (acting
in Matlab. We have used the ellipsoidal toolbox [24] toonly down) is to mitigate the disturbance and damp the chain.
calculate the internal ellipsoidal approximations of tioé/s Fig. 3 shows the disturbance(t) (first plot) and the
ability domain and introduce fairly simple algorithms forhistory of||z(t)|| (second plot) when the control is turned off.
on-line calculation of the desired control strategies. Thghe amplitude of oscillations clearly grows with time. The
text is accompanied by computer animation and numericgbrresponding control (third plot) indeed effectively dzsn

simulations for systems of realistically important dimens the oscillations (see the trajectory pf:(¢)|| in the fourth
subjected to various types of disturbances. plot).

IV. EXAMPLES
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