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Abstract

Within the range of important applied control problems under present investigation is the one of feedback
control of oscillating systems of high dimensions. The given paper indicates effective schemes for solving
such problems for systems subjected to unknown but bounded disturbances including those that may
also be in resonance with system. The selected approach is based on constructing weakly invariant sets
(similar to “Krasovski bridges”) which are then further used to design the specific solution strategies and
also to investigate the damping possibilities of the controls under various types of loads and disturbances.
The text is accompanied by computer animation and numerical simulations based on ellipsoidal tools for
calculating reach sets. This allows to tackle problems of realistically high dimensions and solve them in
limited time.
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m1ẅ1 = k2 · (w2 − w1) − k1w1 + v1,

miẅi = ki+1 · (wi+1 − wi) − ki · (wi − wi−1) + vi, i = 2, N − 1,

mN ẅN = −kN · (wN − wN−1) + u + vN .

u is control
vi are disturbances

Normalized matrix form (with x = (w, ẇ)):

ẋ(t) = Ax(t) + bu + Cv. (1)

This system is completely controllable.

If N is large, the dimension of the system is high.
(In our numerical experiments, N is up to 25, so that the dimension is 50).

Constraints
Control Disturbance
µmin 6 u 6 µmax v ∈ Q — convex compact

e.g. • bilateral: u ∈ [−µ, µ] • in all equations
• unilateral: u ∈ [0, µ], u ∈ [−µ, 0] • in the last equation only

Disturbance may be in the resonance with the system!

Control Problem

Class of closed-loop controls UCL:
set-valued mappings U (t, x)

• convex compact values

• measurable in t

• upper semicontinuous in x.

(1) becomes a differential inclusion

ẋ ∈ Ax + bU (t, x) + CQ (2)

Problem: For a given ε > 0, find

• backward reach set (solvability domain) W [t0] ⊆ R
2N

• closed-loop control U (t, x)

s.t. all trajectories starting in W [t0] satisfy ‖x(t1)‖ 6 ε.

We look for solution
IN GIVEN FINITE TIME [t0, t1].

This is not a problem
of asymptotic stabilization!

Dynamic Programming

The value function:

V (t, x) = V (t, x; t1, V (t1, ·)) = min
U ∈UCL

max
x(·)

{max {0, ‖x(t1)‖ − ε} | x(t) = x}

Principle of optimality: V (t, x; t1, V (t1, ·)) = V (t, x; τ, V (τ, ·; t1, V (t1, ·))), t 6 τ 6 t1.

Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation:

Vt + min
u∈[µmin,µmax]

max
v∈Q

〈Vx, Ax + bu + Cv〉 = 0, t < t1, V (t1, x) = max {0, ‖x‖ − ε}.

Solution/estimate (d(x, X ) is the Euclidian distance from point x to set X):

V (t, x) = d
(

e(t1−t)Ax, e(t1−t)A
W [t]

)

V (t, x) 6 d
(

e(t1−t)Ax, e(t1−t)A
W [t]

)

without disturbance under disturbance

Optimal closed-loop control strategy:

U
∗(t, x) = Arg min

u∈[µmin,µmax]
〈Vx, bu〉 =
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µmin, Vx2N
> 0;

µmax, Vx2N
< 0;

[µmin, µmax], Vx2N
= 0.

Approximation

Finding and storing the exact solvability domain W [t] and the exact value function V (t, x) for large N

is computationally hard and consumes much memory.

A possible solution is:

• replace the solvability domain W [t] with an inner estimate W−[t] of a simple structure;

• replace the value function V (t, x) with an upper estimate d
(

e(t1−t)Ax, e(t1−t)AW−[t]
)

.

The latter leads to the strategy of “aiming” to W−[t]: UW−
(t, x) =
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−µ, ℓ0
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[−µ, µ], ℓ0
2N = 0

where ℓ0 is from d(e(t1−t)Ax, e(t1−t)AW−[t]) = max
‖ℓ‖61

{〈ℓ, x〉 − ρ(ℓ | W−[t])} =
〈

ℓ0, x
〉

− ρ
(

ℓ0
∣

∣ W−[t]
)

.

Ellipsoidal Approximation

Ellipsoids
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ρ(ℓ | E (m, M)) = 〈m, ℓ〉 +
√

〈ℓ, Mℓ〉

(A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control. Boston: Birkhäuser, 1997.)

Ellipsoidal approximation: Z [t] = E (x∗(t), X−(t)), where

ẋ∗(t) = Ax∗(t) + bp + Cq, x∗(t1) = 0

Ẋ−(t) = AX−(t)+X−(t)AT −π(t)X−(t)−π−1(t)CQCT +X
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(A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reach-

ability analysis. Part II: Internal approximations. Box-valued con-

straints,” Optimization methods and software, vol. 17, pp. 177–237,

2002.)

These approximations are tight:

ρ(s(t) | Z [t]) = ρ(s(t) | W [t])

The control is calculated using

ℓ0 = X−1
− [t] · (x − x∗(t)).

Advantages

Ellipsoidal approximation is efficient:

• In n dimensional state space, an ellipsoid is described by only O(n2) values.

• Ellipsoidal approximation is calculated by solving ordinary differential equations.

• The control is calculated by solving a linear system.

• The algorithm allows parallel computations.

• Time-efficiency trade-off: the more ellipsoids you compute, the more accurate is the approximation.

Using ellipsoidal approximations, one can analyze relationships between

• bounds on control

• bounds on disturbance

• desired accuracy (ε)

• length of time interval.

The presented approach is a general scheme for control problems of high dimensions.

Numerical Experiments

The control algorithm is implemented using the Ellipsoidal Toolbox:

http://www.eecs.berkeley.edu/∼akurzhan/ellipsoids/

See computer simulations on the laptop.


