
A dynamic programming approach to the

linear impulse control synthesis problem 1

A. N. Daryin, A. B. Kurzhanski, A. V. Seleznev

Faculty of Computational Mathematics & Cybernetics
Moscow State (Lomonosov) University

1 Vorobievy gory, Moscow 119992, Russia

Abstract

The linear impulse control problem is studied via dynamic programming techniques.
It is approached by introducing a hard bound on control, with a diameter of this
bound tending to infinity. A new definition of a feedback strategy for such problem
is proposed, which takes into account the fact that in actual systems control values
are large but still bounded, thus justifying the use of additional hard bound. A
special attention is given to solving two-dimensional problems. For such problems
the structure and properties of optimal control are studied, and optimal feedback
strategy is constructed.
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1 Introduction

Consider the problem



















J(u(·)) = Var
[t0,t1]

U(·) + φ(x(t1 + 0)) → inf,

dx(t) = A(t)x(t) dt + B(t) dU(t), t ∈ [t0, t1],

x(t0 − 0) = x0.

(1)
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Here x(t) ∈ R
n, U(·) ∈ BV ([t0, t1]; R

m). φ(x) is a convex terminal function;
in particular one may choose φ(x) = δ(x | {x1}) to get a problem of moving
the system from point x0 at time t0 to point x1 at time t1.

The problems of this kind have been studied thoroughly already (see [1–4]).
They may be solved using the maximum principle for impulse control, and
the solution is an open-loop control program. However in the present paper we
shall be interested in expressing the solution in terms of dynamic programming
and finding the optimal control in the form of feedback control.

2 The Dynamic Programming Approach

Denote the optimal value of the problem (1) through V (t0, x0) = V (t0, x0; t1, φ(·)).
This problem may be decomposed into a pair of subproblems: first, find the
optimal right end x1 of the trajectory, and second, find optimal control U(·)
under condition x(t1 +0) = x1. The solution of the latter is known [2,5], which
allows the following representation:

V (t0, x0) = inf
x1∈Rn







φ(x1) + sup
p∈Rn

〈p, x1 − X(t1, t0)x0〉

‖B′(t)X ′(t1, ·)p‖C[t0,t1]







. (2)

Here X(t, τ) is the solution to the matrix differential equation ∂X/∂t = A(t)X,
X(τ, τ) = I.

We then define a semi-norm ‖p‖[t0,t1]
= ‖B′(t)X ′(t1, ·)p‖C[t0,t1]

and rewrite (2)
as

V (t0, x0) = sup
p∈Rn

[

〈p,X(t1, t0)x0〉 − φ∗(p) − δ
(

p
∣

∣

∣

∣

B‖·‖[t0,t1]

)]

. (3)

where B‖·‖[t0,t1]
is the unit ball in the introduced semi-norm. Relation (3) shows

that V (t, x) is a convex function and its conjugate is given by

V ∗(t0, p) = φ∗(X ′(t0, t1)p) + δ
(

X ′(t0, t1)p
∣

∣

∣

∣

B‖·‖[t0,t1]

)

. (4)

Using (4) it is easy to prove the following result:

Theorem 1. The value function V (t, x; t1, φ(·)) of the problem (1) satisfies
the optimality principle in the form of the semigroup property:

V (t0, x0; t1, φ(·)) = V (t0, x0; τ, V (τ, ·; t1, φ(·))), τ ∈ [t0, t1],
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and it is the viscosity solution [6] to the Hamilton–Jacobi–Bellman equation:

min {H1(t, x, Vt, Vx), H2(t, x, Vt, Vx)} = 0, (5)

V (t1, x) = V (t1, x; t1, φ(·)).

H1(t, x, ξt, ξx) = ξt + 〈ξx, A(t)x〉, H2(t, x, ξt, ξx) = min
u∈S1

〈ξx, B(t)u〉 + 1.

Note that in general case V (t1, x; t1, φ(·)) ≤ φ(x), because from (4) it follows
that

V ∗(t1, p) = φ∗(p) + δ(B(t1)p | B1).

Due to (5), in any position (t, x) there are two possible cases for the control.
Either H1 = 0, and control may choose dU(t) = 0; or H1 > 0, in which case
necessarily H2 = 0, and control has to jump in the direction −B ′(t)Vx. The
magnitude of the jump is to be chosen in such a way that after the jump again
H1 = 0.

3 The Double Constraint Approach

Let us introduce a hard bound on the control, u(t) ∈ Bµ, and consider the
corresponding problem:























J(u(·)) =
∫ t1

t0

‖u(t)‖ dt + φ(x(t1)) → inf,

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [t0, t1], x(t0) = x0,

‖u(t)‖ ≤ µ.

(6)

The value function Vµ(t0, x0) = Vµ(t0, x0; t1, φ(·)) of this problem is the vis-
cosity solution to the Hamilton–Jacobi–Bellman equation

∂Vµ

∂t
+ min

u∈µB1

{〈

∂Vµ

∂x
,A(t)x(t) + B(t)u

〉

+ ‖u‖

}

= 0 (7)

with the initial condition Vµ(t1, x) = φ(x). Thus, except some degenerate cases
control only takes values from Sµ ∪ {0}.

The solution of (6) is given by

Vµ(t, x) = sup
p∈Rn

{

〈p,X(t1, t0)x0〉−

− µ
∫ t1

t
(‖B′(τ)X ′(t1, τ)p‖ − 1)

+
dτ − φ∗(p)

}

, (8)
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and its conjugate function in x is

V ∗
µ (t, p) = φ∗(p) + µ

∫ t1

t
(‖B′(τ)X ′(t1, τ)p‖ − 1)

+
dτ. (9)

Note that as µ tends to infinity, expressions (8), (9) turn into (3) and (4)
respectively. It may further be shown under certain conditions that

0 ≤ Vµ(t, x) − V (t, x) = O(µ−1).

The HJB equation (5) may be also derived in the limit from (7) as µ → ∞.

The optimal feedback control strategy is the minimizer in (7), and in points
of the differentiability of Vµ(t, x) it may be written as follows:

U∗
µ(t, x) =























∗0,‖ζ‖ < 1;

[0,−µζ],‖ζ‖ = 1;
{

−µ
ζ

‖ζ‖

}

,‖ζ‖ > 1,

ζ = B′(t)
∂Vµ

∂x
. (10)

However, in (10) it is not possible to proceed to the limit as in (8) and (7). In
particular, it is not clear what the “synthesized” system for the problem (1)
will look like. To avoid this difficulty, we introduce the following definition of
control synthesis for this problem.

Definition 2. A pair of functions U = {u(t, x; µ), θ(t, x; µ)}, such that

u(t, x; µ) ∈ S1 ∪ {0}, u(t, x; µ) →
µ→∞

u∞(t, x),

θ(t, x; µ) ≥ 0, µθ(t, x; µ) →
µ→∞

m∞(t, x),

is called the feedback control strategy for (1).

Definition 3. Fix a control strategy U, number µ > 0 and a partition t0 =
τ0 < τ1 < . . . < τs = t1 of interval [t0, t1]. An approximating motion of system
(1) is the solution to the differential equation

τ ∗
i = τi ∧ θ(τi−1, x∆(τi−1); µ),

ẋ∆(τ) = µB(t)u(τi−1, x∆(τi−1); µ), τi−1 < τ < τ ∗
i ,

x∆(τi) = x∆(τ ∗
i ).

Number σ = max {τi − τi−1} is the diameter of the partition.

Definition 4. Constructive motion of system (1) under feedback control U is
a piecewise continuous function x(t), which is the pointwise limit of approxi-
mating motions x∆(t) as µ → ∞ and σ → 0.
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Example 5. Suppose that current position of (1) is (t̄, x̄), and from (5) it
follows that control has a jump r̄δ(t − t̄). Then the corresponding feedback
strategy values ū = u(t̄, x̄; µ), θ̄ = θ(t̄, x̄; µ) is to be chosen in such a way that
the following equality would hold:

B(t)r̄ = µ

[

∫ t̄+θ̄

t̄
B(t) dt

]

ū.

In the limit this yields

u(t̄, x̄; µ) =
µ→∞

r̄

‖r̄‖
, µθ(t̄, x̄; µ) =

µ→∞
‖r̄‖.

That is, an impulse r̄δ(t − t̄) is (approximately) replaced by a plateau of
magnitude µ, direction r̄ and duration µ−1‖r̄‖.

4 The Two-dimensional Case

In this section we shall study a special case of (1), namely two-dimensional
stationary system with a scalar control:



























dx(t) = Ax(t) dt + b dU(t), t ∈ [t0, t1],

x(t0 − 0) = x0, x(t1 + 0) = x1,

x(t) ∈ R
2, b ∈ R

2, U(t) ∈ R
1,

Var
[t0,t1]

U(·) ≤ µ.

(11)

For such systems time-optimal and energy-optimal control problems are con-
sidered. It is possible to construct an explicit form of optimal control and to
study so-called switching surfaces on which optimal control has a jump and
controlled trajectory is discontinuous. These results are based on geometry of
attainability sets and on the theorem about impulse control structure.

Theorem 6 (Structure of attainability and solvability domains). Let
Xµ[t; t0,X0] be the attainability set for system (11) and Wµ[t; t1,X1] be the solv-
ability set for this system. Then these sets can be represented in the following
form:

Xµ[t; t0,X0] = X(t, t0)X0 + µ conv
⋃

τ∈[t0,t]

X(t, τ)B(τ)B1,

Wµ[t; t1,X1] = X(t, t1)X1 + µ conv
⋃

τ∈[t,t1]

X(t, τ)B(τ)B1.
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Theorem 7 (Control structure). Consider x0 ∈ Wµ[t0; t1, {x1}]. Then
there exists an impulse control U(t) such that

dU

dt
(t) =

k
∑

i=1

hiδ(t − si), hi ∈ R
m, si ∈ [t0, t1],

which translates system (11) from the state {t0 − 0, x0} to the state {t1 + 0, x1}
and

Var
[t0,t1]

U(·) =
k

∑

i=1

‖hi‖ ≤ µ.

Here k is a number of impulses, and k ≤ n where n is a dimension of system.
For systems on plane it is possible to control with only two impulses.

Consider system (11) with time-optimal control problem, i.e. t1 − t0 → min.
Without any loss of generality we shall take x1 = 0. If it is possible to move
this system from the state x0 to the origin, it is also possible to do this only
with two impulses. Thus the optimal control can be represented as

dU

dt
(t) = h1δ(t − s) + h2δ(t − t1), h1, h2 ∈ R

1, s ∈ [t0, t1).

We will study a special case when s = t0, i.e. when optimal control has an
impulse at the first instant. The set of such states x0 will be referred to as
the switching set Jt[µ]. It is convenient to represent Jt[µ] as a union of sets of
equal impulses [r(h1, h2)]. By definition, when x0 ∈ [r(h1, h2)], optimal control
from x0 to the origin has impulses h1 at the first time and h2 at the last time.
So that if T0(x

0) is an optimal time to transfer the system (11) from the state
x0 to the origin, set of equal impulses is

r(h1, h2) =
{

x ∈ R
n

∣

∣

∣ x + h1b + h2 e−T0(x)A b = 0
}

Lemma 8. All systems (11) are divided into two classes:

(1) when matrix A has real eigenvalues of different sign, and
(2) all other systems.

In case 1) r(h1, h2) =
{

−h1b − h2 e−τA b
∣

∣

∣ τ ≥ 0
}

. In case 2)

r(h1, h2) =

{

−h1b − h2 e−τA bτ ≥ 0,h1h2 < 0;

∅,h1h2 ≥ 0.

Theorem 9. Switching set structure The switching set Jt[µ] is the union of
equal impulses sets

Jt[µ] =
⋃

|h1|+|h2|=µ
h1 6=0

r(h1, h2)
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After calculating the switching set, the optimal control synthesis is expressed
in the following form. When x0 ∈ r(h1, h2), for some h1 and h2 such that
|h1| + |h2| = µ, then there is a jump h1δ(t − t0). Otherwise, that is when
x0 6∈ Jt[µ], there is no jump at time t0.

Similar result can be proven for energy-optimal control problem. It simply
follows from the theorem about switching set structure in case of time-optimal
problem.

Theorem 10 (Switching set structure for energy-optimal control
problem). A switching set Jµ[t] has the following representation:

• if t > t∗ then Jµ[t] = ∅;

• If t ≤ t∗ then Jµ[t] =
{

−h1b − h2 e−tA b
}

where h1 and h2 must have the

same sign in case 2) from lemma 8 and arbitrary signs in case 1).

The time parameter t∗ may be calculated directly from system (11).

Control synthesis strategy is also similar to the one in case of time-optimal
system.
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