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Abstract— This paper deals with the problem of synthesizing Here x(t) € R™ is the state vectoi/(-) € BV ([to, t1]; R™)
optimal impulse controls in linear systems through appropri-  js the generalized controBV ([to,t,]; R™) is the space of

ate feedback strategies. Solutions are given within an ideal \, yecior functions of bounded variation. Matrix functions
scheme involving closed-loop delta-function controls, as well as At RnXn B(¢ Rnxm d ti Th
through a “realistic” approximations with delta-type sequences (t) € , B(t) < are assumed conunuous. Ihe

of “ordinary” functions. The solution ia presented through a  terminal timet, is fixed. » : R" — R U {oc} is a closed
dynamic programming scheme which indicates related HJB- convex terminal function; its presence in the formula for
type variational inequalities for this problem. J(u(-)) allows to state the principle of optimality.

A particular choice ofp(z) = Z(z | {=1})! leads to the

i o ~well-known problem of steering the controlled system from a
Solving the problem of control synthesis is one of the MaiBoint 1, at timet, to a pointz; at timet, with the minimum
topics in control theory. This may be done within variousyf yariation of the control:

classes of feedback controls specified in advance. Thus, in Var U() — inf

the classical theory with hard bounds on the controls, the | [z.:] ’

solutions may turn to bg of the. “bang-bgng" type, o] that dz(t) = A()z(t) dt + B(t) dU(t), t € [to, ta), (2)

the synthesized system is described by differential equati

with discontinuous right-hand side [1] and switching soe@ oty —0) =z, x(t1 +0) = .

[2]-[4]. Problems of such kind have been thoroughly studied (see
However, in many applied problems, for example, thosit], [5], [12]-[14]). They may be solved using methods of

related to control in aerospace through instantaneougcorr functional analysis and convexity theory. The solutiorhisrt

tions, control under communication constraints or lodycal an open-loop control. However in the present paper we are

controlled systems the solutions may turn to be of théterested in a dynamic programming solution which yields

impulsetype which requires the control to be of generald closed-loop control. This paper continues the research of

ized nature, consisting of impulse “delta-functions” oeith [15].

combination with bang-bang controls or continuous costrol I, THE IDEAL SCHEME

Problems of such type were mostly treated as those of open- ) . i

loop control (see [4]-[7] etc.), with a well-formalized trg Thevalue functloan(to ,'xo) qf 'p.roblem'('l) is the optimal

of closed-loop control synthesis still pending. value of J(U(-)_) given fixed initial p_05|t|on(t0,a:0). An
The present paper indicates the possibility of a dynamfextended notationV’ (to, zo; 1, ¢(-)) will be also used to

programming approach to problems of impulse control whicRMPhasize the dependence of the optimal valié, zo)

yields solutions in the form of synthesizing control stgags, ON terminal time, and terminal functionp(-).

The discussion is restricted to linear systems which allows Notation W(to, zo) = W (to, zo;t1, 1) will be used for

to incorporate both classical theory of distributions and€ Minimal variation of problem (2). As discussed above,

the theory of generalized (viscosity) solutions [8]-[10] t W (to, wost1, @1) =V (to, zo3 11, Z(- | {x1}))-

the related variational inequalities of the Hamilton-taeo V€& decompose problem (1) into a pair of subproblems:

I. INTRODUCTION

Bellman (HJB) type (see [11]). « find the optimal terminal state; of the trajectory, and
« find the optimal controlU(-) in problem (2) under
Il. THE PROBLEM conditionz(t; + 0) = z;.

In this paper we consider a problem of minimizing a The open-loop solution of the second subproblem is given
generalized Meier-Bolza-type functional along an impulsen [4], [16]. It is summarized in the following statements:

control system: Statement 1.The optimal value in problem (2) may be
T(u()) = Var UC) + p(e( +0)) = inf, presented as
fo,t1 <p,£(:1 —X(t17t0)ﬂf0>
do(t) = A@®a(t) dt + BO)AUW). tefon], B Wloroitnn) = b pp g Do ©
l‘(to - O) = Xy.

Here X (¢, ) is the solution to the matrix differential equa-
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Statement 2WheneverW (¢, z¢) < oo, there exists an and refer to the min-max theorem of [17] on changing the

optimal open-loop control/ () of a special form order ofinf andsup. This yields
Ut) =3 hid(t —7) dt, @  Vltow) = s (. X(t1sto)ao) -
to S TL<T2<..<Tp<ty, u€R™ —¢" ) —-1(p ‘ Big) @
Var U(. B, Wherel’a’H o is the unit ball in the introduced semi-norm,
o] Z ]| = V(to, zo). and ¢*(p) is $'the Fenchel conjugate of(z) [18]. Thus we

have proven the following statement:
In other words, if it is possible to steer the controlled Theorem 2:The value functionV/ (¢, zo) is convex inz
system from(ty, z) to (1, x1), then there exist controls for and its conjugate is given by
which the optimal valudV (¢, =) is attained. Moreover, the
optimal value may be attained using omly(or less) jumps, V™ (to,p) = ¢*(X'(to, t1)p)+
wheren is the dimension of the vectar. +I( X (to, t1)p ‘ B, o ) 8)
Now using (3) the value function of problem (1) may be Using (8) one may prove the n

ext result:
presented as

Theorem 3:The value functionV (¢, z;t1, ¢(-)) of prob-

V(to, wo) = inf {p(z1) + W(to,z0:t1,21)}.  (5) lem (1) satisfies therinciple of optimalityin the form of

z1 ER™ the semigroup property. Namely, for eacte [to, t1]
Lemma 1:If V(tg,zq) is finite, then there exists an V(to, zo;t1, () = V(to, zo; 7, V(7,5 11, 0(-)))-
optimal vector z* such that V(tg,zo) = o(2%) + Note that, unlike problems without impulse controls, in
W (to, zo; t1, 7). the general cas¥ (t1,z;t1, ¢()) < ¢(z), since from (8) it
Proof: Denote ®(z,) = ¢(z1) + W(to,zo;t1,21). Tollows that
From (3) it follows that V*(t1,p) = o*(p) + Z(B(t1)p | By).
|z — X (t1, to)zol| For example, ifp(z) = Z(z | {z1}) and B(t;) = I, then

W (to, xo;t1,21) = ,
(fo, @03 b1, 1) 1B ()X (t1, )p1ll o V(ty, @it e() = |z — 21 < ¢(2).

] ) ) ] Theorem 4:The value functionV (¢, z) is the viscosity

wherep; is a unit vector collinear ta:; — X (t1,to)xo. This  gojution [8] to the Hamilton-Jacobi-Bellman equation:

means thatV (¢, xo;t1,21) — oo as||z1|| — oo, and the

level set min {H1(t, 2, Vi, Vo), Hao(t, 2, Vi, Vo) =0, (9)
= {z1 | ®(z1) < V(to, z0) + &} (6) V(ti,2) = V(t1, z3t1,0(-)).
is compact. Thus the functio®(z) attains its minimum Hi(t, 2, &, &) = & + (&, Alt)z),
value on the sefl at some point:;. [ Hy(t,x,&,8) = négl &z, B(t)u) + 1.
. . . u 1

A c_omblnatlon of statement 2 and Lemma 1 yields the  prgof: First estimate the subdifferentiéf V' (to, zo) in
following result. _ 2 of the value function:

Theorem 1:WheneverV (tg,z9) < oo there exists an
open-loop controlU(-) of type (4) such that/(U(-)) = 9, V(to,x0) C dom V*(to,-) C X’(tl,to)B”.”[t . C
V(to,xo). o

Xl(thto)B”.”[toyt — {p [ 1B (to)pll <1}.

which givesV’(tg, z0; 0, B(t)u) > —1 for ||u|| < 1. Here
”p”[to t1] = = || B'(t)X"(t1, ')pHC[to,tl] V'(to, xo; 7, &) denotes the directional denvatlveYzif(tO, xo)
in direction (7, &). If V (¢, z) is differentiable a{to, =), this
and define a linear subspaég, ;,; = {p ’ 1Pl 9,1 = 0}- turns into H (to, zo, Vi, V) = 0.
It has a positive dimension iff the system in (1) is not Then setting in (5}, = to + o, ¢(:) = V(to + o,-) and

We further introduce a semi-norm dgf*

completely controllable. choosingz; = X (to + o, to)xo, We get
For V (to,xo) to be finite it is necessary and sufficient
that (p, 21 — X (t1,t0)70) — 0 when ||pH o] = 0. or, V(to,zo) < V(to + 0, X (to + o,t0)x0) = w(o).

equivalently,x; € X(t1,t0)xo + P[f )" Since the||-|\[t07t1] Due to the principle of optimality the functiom(s) is non-

is a norm onP[l » We may rewrite (5) as decreasing i, hence its right derivative existat (c40) =

0. This yields V' (o, z0; 1, A(to)z) > 0, and if V(t,z) is

V(to, z0) = inf sup diffe_rentiable at(tmxo),_ it becomesH; (to, zo, Vi, Vi) = 0.
w1 €X (tnto)To+ P,y PEB NP _Flnally take an optimal control of the type (4). Then

0 eitherm;, > to and H; = 0, or iy = ty and H,, that is,

{e(@1) + (py 2y = X(t1,t0)20) }- min{Hy, Hy} = 0. [



Due to (9), in any positiorit, z) there are two possibilities extendable within the regioft, x) € [to,t1] x R™ (see [1]).
for the control. EitherH; = 0, and the control may choose Any optimal control and the corresponding state trajectsry
dU(t) = 0, or H; > 0, in which case it is necessary the(1) satisfies (14). In other words, (14) generates all ptessib
H, =0, and the control has a jump in directienB’(t)V,. optimal trajectories. However, there still remains an open
The magnitude of the jump is to be selected in such a wayuestion whether all trajectories of (14) reaching ¢, are
that after the jump we again havé, = 0. optimal, which will be the subject of the future work.

However, such reasoning is not yet rigorous enough, since Example 1:Consider a one-dimensional impulse control
it is still unclear what would a closed-loop system be undegproblem of type (2):

such control. A possible way to overcome this difficulty lies Var u(-) — inf, dz=B(t)dU®), t € [~1,1],

in using the extended space-time system [6], [7], [19]: { [(-1.1]
dr \ i z(=1-=0) =z, x(1+0)=0.
ds (t(s))z(s) - u'(s) + B(t(s))u”(s), 10 We shall present the exact formulas for the value function
dt ' (10) (5) and for the control synthesis (13) for certain choices
as ¢ (5). of B(t). To shorten the expressions we use the following

Heres is the parameterizing variable for trajectoriessaind ~ @Pbreviations for the control vectons= (u”, u‘): o = (0,0),
t, s € [0,5], and the right end> is not fixed. The extended 1= (L,0), I=(=1,0), == (0, 1),
control u(s) = (u®(s),ut(s)) € R™ x R is restricted by ~ « ForB(t) =1—t, V(t,z) x| /(1 —t) and

hard boundu(s) € B; x [0, 1]. The original impulse control {o, 1}, x>0,
problem (1) corresponds to the following problem for system U*(t,z) =convy {o, 1}, xz <0,
(10): {o,[,1,—}, z=0.
s ) Since B(t) is decreasing, the control should jump to
J(u() = /0 [u”(s)[| ds + ¢(2(5)) — inf, (11) zero as soon as possible.
HO) = to, #(S) = tr. o« ForB(t)=1+t, V(t,z) = |x| /2 and
. . . {07 _>}a t < 17
It is known [7] that any impulse control and its corre- {0,—, 1} t=1.2>0
sponding state trajectory of the original system (1) may be U*(t,z) = conv {o’_f T}, f—1a2<0
presented as similar elements of the extended system (10), {O)l ,T _’>} b lo—0
and that the set of trajectories of (1) is dense in the set of o R ’ o
trajectories of (10). Here'B(t)' is increasing and the cont.rol should wait until
The value function of the problem (11) is the viscosity ~ the final instant °2f time to make a jump.
solution to the the Hamilton-Jacobi—Bellman equation « For B(t) = 1 —t* one hasV(t,z) = [z|, ¢ < 0 and
. V(t,z) = |z| /(1 —t%), t > 0.
utrg[l(?l] H(t71.7 ‘/t’ VIVU - ) - 07 (12) {07 _>}a t < 07
uw661 {O7Hal}a t:O7I’ >07
t T\ __ t =
b Gt W= iy 2h
+ [(&, B(t)u®) + [[u”|[]; = 0, {o. 1}, 150.2>0
which is equivalent to the HIB equation (9) for the impulse {o, 1}, t>0,z <0.

control problem. . . _ Whent < 0, the control should wait for a jump at time
Now using (12) it is possible to define control synthesis  ;, _  \when B(t) is at maximum. Whert > 0, the

for (11) as the set of minimizing control vectors in (12): control should jump immediately, since further &it)
U(t,z) = U {u | H(t, 2,7 &u,u") =0}, (13) will only decrease.
(T,§)€dcV IV. THE DoUBLE CONSTRAINT APPROACH
Here -V is the Clarke subdifferential [20] of the value In the previous section an ideal scheme has been consid-
function with respect to both variablés, z). ered where solutions to the control problem are generalized
Since (10) describes all the trajectories of (1), the cdntrdunctions. Here we shall present a “realistic” approach in
(13) may be regarded as a control synthesis for (1). which controls are “ordinary” bounded functions, though
The closed-loop system under control (13) is a differentigheir bound may be arbitrarily large or even tend to infinity.
inclusion: Let us introduce an additional hard bound on the control

in (1), u(t) € B,,, and consider the corresponding problem:

d% (f) c { (A(f)x Bét)) wluc Z/{*(t,x)}. (14) N

T = [ o]+ elet) — i,
Sincel{*(t,z) is an upper semicontinuous set-valued func- ) to (15)
tion with non-empty compact convex values (this follows i(t) = At)z(t) + B()u(t), 1€ [to,ta],
from the properties of), the solutions to (14) exist and are z(to) = xo, |Ju(®)|] < p.



Remark 1:The solution of problem (15) exists due tounfeasible for large values gi. To avoid this difficulties,
the theorem of Weierstrass: the set of admissible controlge introduce the following definition of control synthesis
is weakly compact (since it is bounded, closed and convdrr this problem.
in Ly([to, t1];R™)), and the objective function/(u(-)) is Definition 1: The pair of functions 4 =
weakly lower semicontinuous (because it is convex and lowet.(¢, x; 1), 0(¢,2; 1)} (“magnitude” and  “duration”),

semicontinuous iy ([tg, t1]; R™)). such that
The value functiotV,, (to, zo) = V. (to, zo; t1, (-)) of this ) )
problem is the viscosity solution [8] to the Hamilton—Jaicob ut,wyp) € SU{0}, ult,zip) . oo (t, ),

Bellman equation 0(t, ;1) > 0, pb(t, ;1) — moo(t, ),
ov, [/ ovV, | "
T + iy o At)z(t) + B)u ) + |jull p =0 is called thefeedback control strategy fdd).
#51 (16) The components andé of such feedback strategy resem-
with initial condition V,(t1,z) = ¢(x). Thus, except for ble the componenta® and ! in the ideal feedback control

some degenerate cases the control values are only$jom (13). The component(t, z) is the direction of the control
{0} impulse which is issued on intervél ¢ + 6(¢, z)]. Note that

The solution of (15) may be presented as an optimal valf@® # — ©©, ¢ — 0 and in the limit one has a delta-function
in a finite-dimensional optimization problem: as control.

Definition 2: Fix a control strategyl, numbery > 0 and
V. (t, ) = sup {<p7X(t1,t0)x0>_ a partition?o =T <7 <. <7y = tl'of interval.[to,tl].
pER™ An approximating motiorof system (1) is the solution to the
t1 , . . differential equation
[ UBE@X @l - 1, dr - )} @)
t 77 =T NO(Ti—1, oA (Tiz1); 1),
and its conjugate function im is given by ia(T) = uBu(ti1, 2a(Tic1); 1), Tio1 <7 <75,

. . o za(ri) = za(r)).
Vi(t,p) =" (p) + “/t (B (m) X" (tr, T)pl| = 1) dr. Numbero = max {r; — 7;,_1} is the diameterof the parti-
' (18) tion.
Herea, = max {a,0}. Definition 3: A constructive motiorof system (1) under
Note that as: tends to infinity, the expressions (17), (18)feedback controll is a piecewise continuous functiarit),
turn into (7) and (8) respectively. For the case R! it may  which is the pointwise limit of approximating motions, (¢)
further be shown that for each positi¢h x) there exists a asu — oo ando — 0.
constantC > 0 such that Suppose that current position of (1) (6 z), and from
_ (9) it follows that control has a jumpd(t — ¢). Then the
0<V(t,z) = Vult,z) = Cu! corresponding feedback strategy valuie(& u(;),i; ), 0 =
The HJIB equation (9) may be also formally derived througH (%, Z; 1) are to be chosen in such a way that the following

a limit transition from (16) ag: — cc. equality would hold:
The optimal feedback control strategy is the minimizer in )
(16), and at points of differentiability o¥,(¢,«) it may be B(t)h = p [/ B(t)dt|a.
written as follows: ¢
{0}, <] < 1; In the limit this yields
* _ [07 _MC]v ||C|| = 1’ _ B _ _
“upgr e el — p oo
- That is, an impulséd(t — ) is (approximately) replaced by
OV - : . S X
where ¢ = B'(t)%;*. The strategy (19) satisfies the con-p yatform of magnitude., with direction 7 and duration

ditions of existence and extendability of trajectories loé t M_luﬁH
closed-loop system in the form of the differential inclusio

[1]: V. THE TWO-DIMENSIONAL CASE
i(t) € A(t)z(t) + B(t)U,(t, ). (20) In this section special case of (2) is studied, namely the
However, in (19) it is not possible to proceed to the limit aéwo-dlmensmnal stationary system with a scalar control:
in (17) and (16). In particular, it is not clear what the clibse dz(t) = Az(t)dt + bdU(t), t € [to, t1],
loop system for the problem (1) will look like. Another x(to — 0) = xo, x(t1 +0) =1, (21)

problem is that if the closed-loop (20) were implemented 9 9 1
using some discretization technique (e.g. Euler’ schentie wi o(t) €R%, bERS, U(t)eR".

time stepo), one should choose = O(n~!) in order For such systems the time-optimal and fuel-optimal control
to attain admissible approximation accuracy, which may bgroblems are considered. It is possible to construct anaixpl



form of optimal control and to study the so-calld®

(Impulse-Generating) surfacgshe analogues of switching
surfaces in bang-bang control) on which optimal control
has a jump and controlled trajectory is discontinuous. €hes

Heret* = min {t,,t}, and

ta =inf {t | e b € int W, [0;¢, {0}]},
t, =1inf {¢ | b € int W, [0;¢, {0}]}.

results are based on the geometry of reachability sets and onlhe following theorem describes the structure of the 1G-

the related theorem on impulse control structure.

set:

The following theorem shows the structure of forward and 1heorem 6:The IG-set.7;[u] is the union of equal im-
backward reachability sets for the controlled system (21): Pulses sets

Theorem 5:Let X, [t; to, Xy] be the reachability set for
system (21) andV,[t;t1, X1] be the backward reachability

set for this system under the conditidfary, ;,; U(-) < p.

Jilp] = r(h1, h2)

U

i [Py |+ ha|=p,ha#0 .
After calculating the IG-set the optimal control synthesis

Then these sets may be presented in the following form: is expressed in the following form. Whery € 7(hy, hs),

X[t to, Xo] = A1) Xy + pucony U A=), b],
TE[to,t]
Wyltity, X1 = e X, 4 pconv U A=) [—b, b].

TE[t,t1]

Considerzy € W, [to;t1,{x1}]. Then, due to the state-
ment 4 there exists an impulse control of type (4) with

most two impulses, i.e. for somee [tg,t1)
U(t) = hax(t — s) + hox(t — t1), h1,ha €R',  (22)

which translates system (21) from the positigg — 0, x¢)
to the position(t; + 0,1), and

2
Var U(-) = > |l < p.
=1

[to,t1]

for someh; andhs such thath; |+ |ha| = u, then there is a
jump h16(t —to). Otherwise, that is wheng & J;[u], there
iS no jump at timet,.

A similar result may be established for the energy-optimal
control problem. It simply follows from the theorem about
IG-set structure in case of the time-optimal problem:

Theorem 7:An IG-set J,[t] has the following represen-
a{ation:

o if t >¢* thenJ,[t] = @,
o If t < t* then J,[t] = {—hib— hoe **b} wherehy
and he must have the same sign for case 2) of Lemma
2 and arbitrary signs for case 1).
The time parametet* may be calculated directly from
system (21).
The control synthesis strategy is also similar to the one
for the time-optimal system.
Example 2:Consider the following problem of stopping
a pendulum by impulse controls:

Consider the time-optimal control problem for system

(21), looking for¢t; — ty — min. Without any loss of
0. If it is possible to steer
this system from the state, to the origin, it is also possible
to do this only with two impulses. Thus the optimal control

generality one may fixe; =

can be presented as in (22).

We will study a special case when= t,, i.e. when the
optimal control has an impulse at the starting time. The set

of such states:” will be referred to as théG-set 7;[u]. It

is convenient to represegf[u] as a union of sets of equal
impulses{r(h1, ho)}. By definition, if 2° € r(hq, h2), then

the optimal control fromz° to the origin has impulses,; at

the starting instant of time anfd, at the final instant. So that

Var U(-) — inf,
0,3]

d =
xl(t) mZ(t) dtv <t< £7
dao(t) = —z1(t) dt + dU(t), 2
21(0-0) =29, 25(0—0) = a9,
z1(5 +0) =0, 12(% +0)=0.

The exact solution of this problem is as follows. If at
current position(¢, 2) one has

t > —arcsin((zy sign z1 ) (22 4+ 22)71/?),

then optimal control has a jump of an amplitude that

if T,(z°) is the optimal time to steer the system (21) fron>0VeS

the statex” to the origin, then the set of equal impulses is

r(hy, ha) = {x e R"

2+ hyb + hoe To@Ap — 0}

Lemma 2:Divide all systems (21) into two classes:

1) matrix A has real eigenvalues of different sign, and

2) all other systems.

In the first case r(h1, ha)
{—h1b— hee™™b | 7 € [0,¢*]}. In the second case

{—h1b—hae ™40 | 7 €[0,t]}, hihe < O;
&, hihy > 0.

’I”(hl, hg) - {

t = —arcsin((xg + hy) signxy (22 + (z2 + hl)z)—l/z)'

Otherwise the control should wait until;, = 0 to have a
jump with amplitudehy, = —z4 straight to the origin. The
optimal trajectories that start at= 0 are shown in Fig. 1.
The corresponding double-constraint control synthesis de
fined by (19) (fort = 0) is shown in Fig. 2. Note that the
state space is divided into four domains: three domaips
R_,, R, correspond to control values 1, —u and an outer
domain Ry contains starting positions from which it is not
possible to attain the origin (the problem is not solvable).
As © — oo, the domainR, fills the second and fourth
quadrants, the domaing_,, and R,, are to fill the first and



third quadrant respectively (Fig. 3). This exactly cormsts
to the ideal impulse control presented in Fig. 1.

VI. CONCLUSION

This paper presents a Dynamic Programming theory for
closed-loop impulse contrah systems with original linear
structure through equations or variational inequalitiethe
HJB type. The suggested approach allows propagation to
impulse control problems which involve derivatives of delt
functions along the lines of [16].

VIlI. ACKNOWLEDGEMENTS

This work is supported by Russian Foundation for Basic
Research (grant 03-01-00663). It has been realized witigin t
programs “State Support of the Leading Scientific Schools”
(1889.2003.1) and “Universities of Russia — Basic Re-
search” (UR.03.03.036).

REFERENCES

[1] A. F. Filippov, Differential Equations with Discontinuous Righthand
Sides Dordrecht: Kluwer, 1988.

[2] E. B. Lee and L. MarkusFoundations of Optimal Control Theary
N.Y.: Wiley, 1967.

[3] L. S. Pontryagin, “On linear differential games lIDokl. AN SSSR
vol. 175, no. 4, pp. 910-912, 1967, in Russian.

[4] N. N. Krasovski, The Theory of Motion Control Moscow: Nauka,
1968, in Russian.

[5] L. W. Neustadt, “Optimization, a moment problem and nordine
programming,”SIAM Journal on Contrglvol. 2, no. 1, 1964.

[6] V. A. Dykhta and O. N. SumsonukQptimal impulsive control with
applications Moscow: Fizmatlit, 2003, in Russian.

[7] M. Motta and F. Rampazzo, “Space-time trajectories of mamalr
systems driven by ordinary and impulsive controBjfferential and
Integral Equationsvol. 8, pp. 269-288, 1995.

[8] M. G. Crandall and P.-L. Lions, “Viscosity solutions ofalrhilton—
Jacobi equations,Transactions of American Mathematical Socjety
vol. 277, pp. 1-41, 1983.

[9] W. H. Fleming and H. M. SoneirControlled Markov Processes and
Viscosity Solutions N.Y.: Springer, 1993.

[10] A. I. Subbotin, Generalized Solutions of First-Order PDE’s. The
Dynamic Optimization Perspectiveer. SCFA. Boston: Birldwser,
1995.

[11] A. Bensoussan and J.-L. Lion€ontrdle impulsionnel et inequations
quasivariationnelles Paris: Dunod, 1982.

[12] A. B. Kurzhanski, Control and Observation under Uncertainty
Moscow: Nauka, 1977, in Russian.

[13] ——, “Optimal systems with impulse controls,” Differential Games
and Control Problems Sverdlovsk: UNC AN SSSR, 1975.

[14] M. I. Guseyv, “On optimal control of generalized processader non-
convex state constraints,” Differential Games and Control Problems
Sverdlovsk: UNC AN SSSR, 1975.

[15] A. N. Daryin, A. B. Kurzhanski, and A. V. Seleznev, “A dgmic pro-
gramming approach to the linear impulse control synthesisl@nob
in Proc. GSCP-04 Pereslavl-Zalessky: IFAC, 2004, pp. 44-48.

[16] A. B. Kurzhanski and Yu. S. Osipov, “On controlling liaesystems
through generalized controlsPifferenc. Uravn, vol. 5, no. 8, pp.
1360-1370, 1969, in Russian.

[17] F. Ky, “Minimax theorems,”Proc. Nat. Acad. of Sci. USAol. 39,
no. 1, pp. 42-47, 1953.

[18] R. T. RockafellarConvex Analysisser. Princeton Mathematics Series.
Princeton University Press, 1970, vol. 28.

[19] B. M. Miller and E. Ya. Rubinovichlmpulsive Control in Continuous
and Discrete-Continuous Systems\.Y.: Kluwer, 2003.

[20] F. H. Clarke, “Generalized gradients and applicatjorisansactions
of American Mathematical Societyol. 205, pp. 247-262, 1975.

Fig. 3. The convergence of double-constraint controls ¢dittfipulse control
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Fig. 2. Double-constraint control trajectories
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