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1. INTRODUCTION

In this paper we consider the problem of synthesizing fast
controls under unknown-but-bounded disturbances.

The term “fast control” stands for bounded approxima-
tions of generalized control inputs (Kurzhanski and Daryin
(2008)) in the form of higher-order distributions (see gen-
eralized functions in Gelfand and Shilov (1964); Schwartz
(1950)).

In its turn, a problem with generalized control inputs
may be reduced to an “ordinary” impulse control problem
using impulses of lowest order (Kurzhanski and Osipov
(1969); Daryin and Kurzhanski (2008)). Such problems
were introduced and studied in an open-loop form by
Krasovski (1957); Neustadt (1964). However, due to the
presence of disturbances, it is necessary to develop closed-
loop solutions. Here we do this along the lines of paper
by Kurzhanski (1999), with bounded controls replaced by
those of impulsive type.

The solution of the problem considered here comes in the
following four steps:

(1) state the problem with generalized control inputs;
(2) reduce it to an “ordinary” impulse control problem;
(3) solve the last control problem in the class of closed-

loop controls;
(4) approximate the solutions by realistic fast controls.

Note that the third step in general involves the solution
of a variational inequality of Hamilton–Jacobi–Bellman–
Isaacs type. However, in the case of one-dimensional state
space it is possible to get an explicit representation for the
value function, which will be demonstrated in Section 4.

⋆ This work is supported by Russian Foundation for Basic Research
(grant 09-01-00589-a), by the Russian Federal Program Scientific
and Pedagogical Staff of Innovative Russia in 2009–2013 (contract
16.740.11.0426 of 11/26/2010), by the program “State Support of
Young Scientists” (Grant MK-1111.2011.1), and by NSF (Grant
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2. GENERALIZED CONTROL PROBLEM UNDER
DISTURBANCES

2.1 Problem Statement

Consider system

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t)v(t). (1)

Here u(t) ∈ R
m is a generalized control in the sense defined

below. Matrix function A(t) ∈ R
n×n and B(t) ∈ R

n×m are
taken to be k times differentiable on the interval α ≤ t ≤ β.

The disturbance v(t) is bounded: it is a piecewise-
continuous function, taking values in a given non-empty
convex compact set Q(t).

The generalized control u(t) is chosen from the space
D∗

k,m[α, β] of linear functionals on normed linear space

Dk,m[α, β] (Gelfand and Shilov (1964); Schwartz (1950)).
The latter consists of k times differentiable functions ϕ(t) :
[α, β] → R

m with support set contained in (α, β), endowed
with a norm G [ϕ].

The norm G [ϕ] defines a conjugate norm G ∗[u] in space
D∗

k,m[α, β]. The control is then a distribution of order

ku ≤ k, and the trajectories of (1) are distributions from
D∗

k−1,n[α, β].

Let f (α) and f (β) be two distributions from D∗
k,n[α, β]

concentrated at points tα and tβ respectively. We call f (α)

the initial, and f (β) the terminal distribution.

Given the realization of a piecewise-continuous distur-
bance v(t), an admissible control u(t) is a distribution from
D∗

k,m[α, β], contained within the interval [tα, tβ ], where
α < tα ≤ tβ < β, ensuring the existence of distribution
x(t) ∈ D∗

k−1,n[α, β] which solves equation

ẋ(t) = A(t)x+B(t)u+ C(t)v(t) + f (α) − f (β). (2)

Problem 1. For a given distribution f (α) and a fixed time
interval [tα, tβ ], find a closed-loop control strategy which
generates admissible controls u(t) ∈ D∗

k,m[α, β], minimiz-
ing the functional

J(u, f (β)) = max
{

G
∗[u] + ϕ(f (β))

∣
∣
∣ v(·) ∈ Q(·)

}

. (3)



Here G ∗[u] is a conjugate norm in the space D∗
k,m[α, β]

defined by the norm G [ϕ], and ϕ(f) is a proper convex
closed function, bounded from below.

2.2 Reduction to the “Ordinary” Impulse Control Problem

In order to properly define a closed-loop control strategy
for Problem 1, we first reduce the latter to an ordinary
(first-order) impulse control problem, following Kurzhan-
ski and Osipov (1969).

Define functions Lj(t) by recurrent relations

L0(t) = B(t), Lj(t) = A(t)Lj−1(t)− L′
j−1(t), (4)

j = 1, k, and form a matrix B(t) = (L0(t) L1(t) · · · Lk(t)).

The controls U(t) =
(

UT
0 (t) UT

1 (t) · · · UT
k (t)

)T
are cho-

sen from the class BV ([tα, tβ ];R
m(k+1)) of functions of

bounded variation (each of functions Uj(t), j = 0, . . . , k
is with values in R

m). Then the corresponding control in
Problem 1 is

u(t) =

k∑

j=0

(−1)j
dj+1Uj

dtj+1
.

Finally we define the end point of the trajectory xα =

x(tα) =
∑k

j=0 LA,j(tα)αj and a terminal functional

Φ(x) = min
{

ϕ(f (β))
∣
∣
∣
∑k

j=0 LA,j(tβ)βj = x
}

, where LA,j(t)

is defined by recurrence relations similar to (4) but with
initial condition LA,0(t) = I.

Problem 2. Find a closed-loop control that generates ad-
missible control trajectories U(·) ∈ BV ([tα, tβ ],R

m(k+1))
minimizing the functional

J(U(·)) = max
v(·)∈Q(·)

{Var{U(·) | [tα, tβ ]}+Φ(x(tβ + 0))}

along the trajectories of

dx(t) = A(t)x(t)dt+ B(t)dU(t) + C(t)v(t), x(tα) = xα.

This problem is treated in the next section.

3. IMPULSE FEEDBACK CONTROL UNDER
DISTURBANCES

3.1 Problem Formulation

Consider a linear system

dx(t) = A(t)x(t)dt+B(t)dU(t) + C(t)v(t)dt. (5)

Here t ∈ [t0, t1], x(t) ∈ R
n is the state vector, U(t) is a

generalized control. U(·) belongs to the space BV ([t0, t1])
of functions of bounded variation. We also have the un-
known disturbance input v(t) ∈ R with values restricted
to a closed compact set Q(t). Given are matrix functions
A(t) ∈ R

n×n, B(t) ∈ R
n, C(t) ∈ R

n that are continuous.

The problem is to minimize the functional

max
v(·)∈Q(·)

{VarU(·) + ϕ(x(t1))} → inf .

The initial condition x(t0) = x0 is given and initial time
t0 and terminal time t1 are fixed.

The problem will be solved using Hamiltonian techniques
in the form of Dynamic Programming. In order to intro-
duce the value function for closed-loop controls, we shall
follow the scheme described by Kurzhanski (1999).

3.2 Min-Max Value Function

The min-max value function is defined as

V −(t0, x0) = min
U(·)

max
v(·)

[VarU(·)+ϕ(x(t1+0)) | x(t0) = x0].

Here x(t) is the trajectory of system (5) corresponding to
a fixed control U(·) and disturbance v(·).
The function V − may be calculated as follows. First, we
take the maximum over v(·). Note that VarU(·) does not
depend on v(·), and the right end of the trajectory x(t1+0)
may be expressed as

x(t1 + 0) = X(t1, t0)x0 +

∫ t1+0

t0

X(t1, t)B(t)dU(t)

︸ ︷︷ ︸

x̂(t1+0)

+

∫ t1

t0

X(t1, t)C(t)v(t)dt

︸ ︷︷ ︸

v(t1)

= x̂(t1 + 0) + v(t1).

Here X(t, τ) is the solution to the following linear matrix
ODE: ∂X(t, τ)/∂t = A(t)X(t, τ), X(τ, τ) = I.

The vector x̂(t1+0) is the right end of the trajectory with
no disturbance. The vector v(t1) belongs to the set

Q =

∫ t1

t0

X(t1, t)C(t)Q(t)dt.

Now, employing convex analysis (Rockafellar (1999)) we
first get

max
v(·)∈Q(·)

ϕ(x(t1 + 0)) = max
v∈Q

ϕ(x̂(t1 + 0) + v) =

max
v∈Q

max
p∈Rn

{〈x̂(t1 + 0) + v, p〉 − ϕ∗(p)} =

max
p∈Rn

{〈x̂(t1 + 0), p〉+ ρ (p | Q)− ϕ∗(p)} = ψ(x̂(t1+0)),

where ψ(x̂(t1 + 0)) is a convex function whose conjugate
is ψ∗(p) = conv {ϕ∗(p)− ρ (p | Q)}.
Secondly, we calculate the minimum over U(·). Since now

V −(t0, x0) = min
U(·)

[VarU(·) + ψ(x̂(t1 + 0)) | x(t0) = x0],

Hence this is an impulse control problem without distur-
bance. The value function is

V (t0, x0) =

= max
p∈Rn

{〈
XT (t1, t0)p, x

〉
− ψ∗(p)− I (p | BV [t0, t1])

}
,

(see Kurzhanski and Daryin (2008)), where

BV [t0, t1] = {p | ‖p‖V ≤ 1},
‖p‖V = max{‖BT (τ)XT (t1, τ)p‖ | τ ∈ [t0, t1]},

where ‖ℓ‖ is the Euclidean norm. BV [t0, t1] is a unit ball
in R

n whose defined for the the interval [t0, t1].

3.3 Value Function with Corrections

For the min-max value function calculated in the previous
section, we shall use an extended notation V −(t0, x0) =
V −(t0, x0; t1, ϕ(·)).
Let t0 = τN < τN−1 < · · · < τ1 < τ0 = t1 be some
partition of the interval [t0, t1]. It will be denoted by T ,
and diamT is max{τk − τk+1}.



Define the value function with corrections V −
T
(t, x) by the

following recurrent relations:

V −
T
(τ0, x) = V −(t1, x; t1, ϕ(·));

V −
T
(τk+1, x) = V −(τk+1, x; τk, V

−
T
(τk, x)).

Function V −
T
(t, x) may be interpreted as the value function

for the sequential min-max problem, when at instants τk
the control obtains information on the current state x(t).

Note that if T ′ is a subpartition of T , then clearly
V −

T ′(t, x) ≤ V −
T
(t, x).

3.4 Closed-Loop Value Function

Denote
V

−(t, x) = inf
T
V −

T
(t, x).

It may be proved (similar to Kurzhanski and Daryin
(2008)) that the value function V −(t, x) satisfies a
Hamilton–Jacobi–Bellman–Isaacs type variational inequal-
ity:

min{H1,H2} = 0,

H1(t, x) = V
−
t +max

v∈Q

〈
V

−
x , A(t)x+ C(t)v

〉
,

H2(t, x) = min
‖h‖=1

{‖h‖+
〈
V

−
x , B(t)h

〉
},

V
−(t1, x) = V

−(t1, x; t1, ϕ(·)).

Here the Hamiltonian H1 corresponds to the motion
without control (dU = 0), and H2 corresponds to the
jumps generated by control impulses. Therefore, the last
variational inequality may be interpreted as follows: if for
x(τ) we have H1 = 0, then the control may be equal to
zero, and if H2 = 0, then the control must have a jump.

4. 1D IMPULSE CONTROL PROBLEM

In the case of one-dimensional state space (x ∈ R
1) it

is possible to present an explicit expression for the value
function.

4.1 Problem Formulation

Here we consider the impulse control problem in R with a
specific terminal functional:

dx(t) = b(t)dU(t) + c(t)v(t)dt, t ∈ [t0, t1],

VarU(·) + α0d(x(t1 + 0),M) + k0 → inf,

where M = [m1,m2], v(t) ∈ Q(t), Q(t) = [q1(t), q2(t)].

4.2 Min-Max Value Function

Denote the min-max value function as

V −(t0, x0) = min
U(·)

max
v(·)

[VarU(·)+

+ α0d(x(t1 + 0),M) + k0
∣
∣x(t0) = x0].

It can be rewritten as follows

V −(t0, x0) = min
x1

[

min
U(·)

[
max
v(·)

[VarU(·)+

+ α0d(x(t1 + 0),M) + k0]
∣
∣x(t1) = x1

]
∣
∣
∣
∣
x(t0) = x0

]

.

Theorem 3. Min-max value function V −(t, x) belongs to
the class of functions αd(x,N) + k and may be expressed
in the following form:

V −(t0, x0) = min(α[t0,t1], α0)d(x0, N) + α0k + k0,

where

α[t0,t1] = min
t∈[t0,t1]

|b(t)|−1,

N = [n1, n2], ni = mi − qi, i = 1, 2,

k =
1

2
(n1 − n2)−

1

2

(∫ t1

t0

c(ξ)q1(ξ)dξ −
∫ t1

t0

c(ξ)q2(ξ)dξ

)

.

Proof. We first introduce three lemmas.

Lemma 4. For the linear system dx(t) = b(t)dU(t) :

min[Var U(·)
∣
∣x(t0) = x0, x(t1) = x1] =

=
|x1 − x0|

maxt∈[t0,t1] |b(t)|
.

Lemma 5. Let M = [m1,m2], Q = [q1, q2], then

max
v∈Q

d(x+ v,M) =







d(x, [n1, n2]),

if q2 − q1 < m2 −m1,

d(x,m∗) + k∗,

otherwise.

Here

n1 = m1 − q1, n2 = m2 − q2,

m∗ =
m1 +m2

2
− q1 + q2

2
,

k∗ =
m1 −m2

2
− q1 − q2

2
.

In the second case the interval N = [n1, n2] contains only
one point {m∗}.
Lemma 6. Let α > 0, β > 0, N = [n1, n2]. Then

min
x1

{βd(x1, N) + k + α|x1 − x0|} =

= min(α, β)d(x0, N) + k.

We further use the previous lemmas to prove Theorem 3.
Consider the min-max value function

V −(t0, x0) = min
U(·)

max
v(·)

[VarU(·)+

+ α0d(x(t1 + 0),M) + k0
∣
∣x(t0) = x0].

The right end of the trajectory x(t1+0) may be expressed
in two terms:

x(t1 + 0) =

(

x(t0) +

∫ t1

t0

b(ξ)dU(ξ)

)

+

+

(∫ t1

t0

c(ξ)v(ξ)dξ

)

= x1 + v,

where v belongs to the set

[∫ t1

t0

c(t)q1(t)dt,

∫ t1

t0

c(t)q2(t)dt

]

.

According to the lemmas of the above we calculate the
value function as



V −(t0, x0) = min
x1

[

min
U(·)

[
max
v(·)

[α0d(x1 + v,M) + k0+

+VarU(·)]
∣
∣x(t1) = x1

]
∣
∣
∣
∣
x(t0) = x0

]

=

= min
x1

[
min
U(·)

[α0 (d(x1, N) + k) + k0+

+VarU(·)
∣
∣x(t1) = x1]

∣
∣x(t0) = x0

]
=

= min
x1

[α0d(x1, N) + α0k + k0+

+ α[t0,t1]|x1 − x0|
∣
∣x(t0) = x0] =

= min(α[t0,t1], α0)d(x0, N) + α0k + k0.

Therefore, the minimax value function V −(t, x) belongs to
the class of functions αd(x,N) + k.

4.3 Value function with corrections

We recurrently define min-max value functions with k
corrections at τ1, . . . , τk, where t0 < τk < · · · < τ1 < t1.

The value function with zero corrections is

V − = min
x1

min
U(·)

max
v(·)

[V ar U(·) + α0d(x1 + v(·),M) + k0] .

We make one correction at τ1: the right end of the
trajectory x(t1) may be expressed as

x(t1) = x1 + v

x1 = xτ1 +

∫ t1

τ1

b(ξ)dU(ξ), v =

∫ t1

τ1

c(ξ)v(ξ)dξ,

where v is it the set

[∫ t1

τ1

c(ξ)q1(ξ)dξ,

∫ t1

τ1

c(ξ)q2(ξ)dξ

]

.

It may be shown that the value function with one correc-
tion at τ1 belongs to the same class of functions and is
expressed as V −

0 = α1d(xτ1 , N
1) + k1, where α1, k

1 and
interval N1 are explicitly calculated from the given data.

Then we continue by introducing a correction at τ2, and
further, using V −

1 as a terminal function, to create value
function V −

2 with two corrections. We continue still further
similarly.

4.4 Close-Loop Value Function

As we proceed, increasing the number of corrections to-
wards infinity, in the limit we come to the value function
expressed in a similar way, namely,

V
− = αd(x0, N) + k.

Here, the interval N contains more than one point

N =

[

m1 −
∫ t1

t0

c(ξ)q1(ξ)dξ,m2 −
∫ t1

t0

c(ξ)q2(ξ)dξ

]

,

and k = k0, if

m2 −m1 >

∫ t1

t0

c(ξ)q2(ξ)dξ −
∫ t1

t0

c(ξ)q1(ξ)dξ.

Otherwise, we have a degenerate case when N contains
only one one point

N = n∗ =
1

2
(m1 +m2)−

1

2

(
∫ t1

t0

c(ξ)q1(ξ)dξ+

+

∫ t1

t0

c(ξ)q2(ξ)dξ
)
.

k =
1

2
α

∫ τ∗

t0

c(t)(q2(t)− q1(t))dt,

τ∗ is the time moment when

m2 −m1 =

∫ t1

τ∗

c(ξ)q2(ξ)dξ −
∫ t1

τ∗

c(ξ)q1(ξ)dξ.

In both cases

α = min
(
α0, min

t∈[t0,t1]
|b(t)|−1

)
.

For the value function V − = αd(x0, N)+k the semi-group
property is satisfied.

4.5 Example

Consider a linear system 1 dx = (1 − t2)dU + v(t)dt
with [t0, t1] = [−1, 1], M = 0, where the disturbance
v(t) ∈ [−1, 1]. It has to be steered from its initial state
x(−1) = x by the control that delivers a minimum to
functional

VarU(·) + 2d(x(t1 + 0),M) → inf . (6)

The value function V −(t, x) = α(t)|x|, where
α(t) = min

(

2, min
τ∈[t,1]

1

1− τ2

)

.

We calculate the Hamiltonian functions:

H1 =







tx

1− t2
, if 0 ≤ t ≤ 1/

√
2,

0, if − 1 ≤ t < 0, and 1/
√
2 < t ≤ 1.

H2 =







t2, if − 1 ≤ t < 0,

2t2 − 1, if 1/
√
2 < t ≤ 1,

0, if 0 ≤ t ≤ 1/
√
2.

There are three cases:

(1) if t < 0 we have H1 = 0, H2 6= 0, then we do not
apply control;

(2) if 0 ≤ t ≤ 1/
√
2, we have H1 6= 0, H2 = 0 and we

steer our system with an impulse control;
(3) if 1/

√
2 < t ≤ 1, we have H1 = 0, H2 6= 0, then we

do not apply control.

The control U = −γδ(t−t∗), where γ =
x(t∗ − 0)

1− t2
, because

we need to reach x(t∗ + 0) = 0.

Figs. 1, 2 show trajectories x(t) and control U for different
disturbance v(t). Note that we apply impulse control when

0 ≤ t∗ ≤ 1√
2
and the trajectory reaches zero. After that we

do not apply control, and the trajectory drifts away from
zero, because of the disturbance. This is the trajectory and
the control that deliver minimum to functional (6).

5. FAST CONTROLS

Impulse control is an “ideal” one. Bounded functions
approximating impulse controls are known as fast controls,
since they are physically realizable and may steer a system

1 The calculations in this example were performed by Anastasia
Melnikova.
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Fig. 1. Trajectory of the system, starting from x(−1) = 1,

and corresponding control. Disturbance is v(t) =
sin(20t).
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Fig. 2. Trajectory of the system, starting from x(−1) = 1,
and corresponding control. Disturbance is constant
v(t) = 1.

to a given state in arbitrary small time. Such controls may
be found, for example, in the following form:

u∆(t) =
∑m

j=0
uj∆

(j)
hj

(t− τ), (7)

where ∆
(j)
h (t) approximate the derivatives of delta-function:

∆
(0)
h (t) = h−11[0,h](t),

∆
(j)
h (t) = h−1

(

∆
(j−1)
h (t)−∆

(j−1)
h (t− h)

)

.
(8)

The next problem is how to choose the parameters of
control (7) — the coefficients hj and vectors uj . These
should be chosen following physical requirements on the
realizations of the control.

5.1 Discontinuous Approximations

We first consider fast controls with various restrictions:

(1) bounded time of control:

max
j

{(j + 1)hj} ≤ H;

(2) hard bounds on control:

‖u∆(t)‖ ≤ µ;

(3) separate hard bounds on approximations of general-
ized functions of all orders included in the control:

‖u∆,j(t)‖ ≤ µj ,

u∆,j(t) = uj∆
(j)
hj

(t− τ).

The indicated restrictions lead to moment problems of
similar type.

µ→ inf,∣
∣
∣∆

(n)
h (t)

∣
∣
∣ ≤ µ, t ∈ [−h, h]. (9)

We impose extra restrictions to ensure that the approxi-

mations ∆
(n)
h (t) affect polynomials of degree n in the same

way that δ(n)(t).
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Fig. 3. Discontinuous approximations of δ(t),
δ′(t), . . . , δ(5)(t) with minimal modulus on fixed
time interval.

∫ h

−h

∆
(n)
h (t)tkdt = 0, k = 0, . . . , n− 1,

∫ h

−h

∆
(n)
h (t)tndt = (−1)nn!

(10)

The moment problem (9) with restrictions (10) has the
following solution:

∆
(n)
h (t) = 1

4 (−1)nn!
(
2
h

)(n+1)
signUn(ht), (11)

where Un(t) is the Chebyshev polynomial of the second
kind: Un(t) = cos(n arccos t).

Approximation (11) is piecewise constant (and hence dis-

continuous), equal to ± 1
4n!

(
2
h

)(n+1)
between Chebyshev

points tk = h cos πj
n+1 , j = 0, . . . , n+ 1. See Fig. 3.

5.2 Smooth Approximations

Apart from discontinuous, we also consider continuous or
smooth approximations. To do this, we impose bounds on
the k-th derivatives of the approximation:

∆
(n)
h,k(t) =

∫ t

−h

∫ t1

−h

. . .

∫ tk−1

−h

gnk (tk)dtkdtk−1 . . . dt1,

|gnk (t)| ≤ µ.

And we add similar restrictions on related polynomials of
degree n, that were used for discontinuous approximations:

∫ h

−h

∆
(n)
h,k(t)t

jdt = 0, j = 0, . . . , n− 1,
∫ h

−h

∆
(n)
h,k(t)t

ndt = (−1)nn!

This leads to moment problems for the k-th derivative

gnk (t) of approximation ∆
(n)
h,k(t):



δ(0), k = 2 δ(1), k = 2 δ(2), k = 2 δ(5), k = 2

Fig. 4. Continuously differentiable approximations of δ(t)
and its derivatives.

µ→ inf,
|gnk (t)| ≤ µ, t ∈ [−h, h],

∫ h

−h

gnk (t)t
jdt = 0, j = 0, . . . , n+ k − 1,

∫ h

−h

gnk (t)t
n+kdt = (−1)n+k(n+ k)!

It turns out that a (k−1)-times smooth approximation

of δ(n)(t), ∆
(n)
h,k(t), is a normalized k-fold integral of

∆
(n+k)
h (t):

∆
(n)
h,k(t) =

1

(k − 1)!

∫ t

−h

gnk (τ)(t− τ)k−1dτ, (12)

gnk (t) = ∆
(n+k)
h (t) =

= 1
4 (−1)n+k

(
2
h

)n+k+1
(n+ k)!signUn+k(ht).

Here k = −1 corresponds to discontinuous approximations

∆
(n)
h (t), and k = 0 leads to continuous (but not smooth)

approximations.

Approximations ∆
(n)
h,k(t) are piecewise polynomials of order

k, with k−1 derivatives continuous at the junction points.
The coefficients of these polynomials may be calculated
recursively by explicit formulae.

In Fig. 4 we present our continuously differentiable ap-
proximations of δ(t) and its derivatives.

5.3 Growth Rate of Fast Controls

Here we present some estimates on how fast do the norms
µ of a fast controls grow with time interval h tending to
zero. We assume that the aim of the control is to steer the
system to the origin.

Suppose that A(t) ≡ A, B(t) ≡ B. According to Seidman
and Yong (1997), the minimum variation of the impulse
control is varying asymptotically as

µ ∼ h−r, r = min{j | x0 ∈ Rj}, (13)

where Rj = im
(
B AB · · ·AjB

)
.

It was shown by Daryin and Kurzhanski (2008) that for
fast controls of type (8) the estimate (13) holds, with Rj =(

F
(0)
h B F

(1)
h B · · · F (j)

h B
)

, F
(s)
h = h−s(1−e−hA)sFh, and

Fh = h−1
∫ h

0
e−tAdt.

Using the same reasoning, one comes to the estimate (13)
for fast controls of type (11), with

Rj =
(

F̂
(0)
h B F̂

(1)
h B · · · F̂ (j)

h B
)

,

F̂
(k)
h =

∫ h

−h

∆
(k)
h (t)e(h−t)A dt.

Similarly, for smooth approximations of (k − 1)-th order
of type (12), we have the following estimate:

µ ∼ h−(r+k), r = min{j | x0 ∈ Rj}. (14)
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