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The System

The system ( _x(t) = B(t)u+ v;
_k(t) = �kuk2R(t) (�)

is considered on a fixed time interval T = [t0; t1].
Control (u) is restricted by a double constraint

hard bound + soft bound

u 2 P(t) k(t) > 0
mZ t

t0 kuk
2R(t) dt 6 k(t0)

Disturbance (v) is subject to

hard bound

v 2 Q(t)

1



Control classes

UCL — Closed-loop (feedback) strategies

U(t; x; k) : [t0; t1]� R
n � R ! convR

n;
measurable in t and u.s.c. in (x; k);

U(t; x; k) � P(t);
U(t; x; k) = f0g when k < 0:

These requirements are sufficient for the control to

ensure the existence of solutions to0
@ _x(t)

_k(t)
1
A 2 conv

8<
:
0
@ B(t)u
�kuk2R(t)

1
A
������ u 2 U(t; x; k)

9=
;| {z }B(t;U(t; x; k))

+Q(t)

(��)
and to obey the double constraint.

UOL = UOL(k0) — Open-loop controls

u(t) : [t0; t1]! R
n; measurable in t;

u(t) 2 P(t); Z t1
t0 kuk2R(t) dt 6 k0:
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Set Cross-Sections

Let N � R
n � R be a set of (x; k) pairs.

N (k) = fx 2 R
n j (x; k) 2 Ng

is a cross-section of N at level k.

N = f (x; k) j x 2 N (k)g
? N convex =) N (k) convex

? N (k) convex =) N quasi-convex

? if N (k) are closed and locally bounded, thenN closed () N (�) u.s.c.

? N = epi f =) N (k) is a level set of f(�) at level k.

x1; : : : ; xn

k N
/

N (k�)
ik� k = k�
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The Problem

Let M be a non-empty target set, s.t.

1. M(k1) �M(k2) if k1 6 k2 (monotonicity);

2. M(k) = ∅ for k < 0;
3. M(k) is Hausdorff-continuous when M(k) 6= ∅;

4. M(k) 2 convR
n.

Problem. Specify a solvability domain W[t] � R
n+1

and a feedback control strategy U(t; x; k) 2 UCL s.t. all

the solutions of the differential inclusion (��) starting

from (t; x(t)) 2 W[k(t); t] satisfy x(t1) 2M(k(t1)).
(Ledyaev, 1985)

x1; : : : ; xn

k

x1; : : : ; xn

k

R

k(t0)
k(t1)

x(t0) x(t1)t = t0 t = t1

W[t0] M
U(t; x; k)v(t)
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Solution Outline

Problem is solved using the conjunction of the following

concepts:

? Pontryagin’s alternated integral

(Pontryagin, 1967; Pontryagin, 1980).

? Krasovski’s extremal construction

(Krasovski, 1968; Krasovski and Subbotin, 1974).

? “Nonsmooth”dynamic programming

(Crandall and Lions, 1983; Subbotin, 1990).

Such combination was later considered by Kurzhanski

(1999), Kurzhanski and Melnikov (2000) for problems

with hard bounds on control and disturbance with the

aim of introducing ellipsoidal methods (solving problem

to the end).
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Alternated Integral

Open-Loop Solvability Domains

Max-Min Solvability Domain W+(k; t; t1;M(�)) is

the set of points x 2 R
n s.t. for any admissible v(�)

there exists u(�) 2 UOL(k) s.t. x(t1) 2M(k(t1)).
(disturbance is known in advance)

Min-Max Solvability Domain W�(k; t; t1;M(�)) is

the set of points x 2 R
n s.t. there exists u(�) 2 UOL(k)

for which x(t1) 2 M(k(t1)) for any admissible v(�).
(no information on disturbance)

Here x(�) is the trajectory of (�) starting at point (x; k)
under control u(�).
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Alternated Integral

Open-Loop Solvability Domains (cont)

W+(k; t; t1;M(�)) =
= h [06
6kM(
)�XGI(t; t1; k � 
)i _�Z t1

t Q(�) d�;
W�(k; t; t1;M(�)) =

= [
06
6k

h�M(
) _�Z t1
t Q(�) d���XGI(t; t1; k � 
)i:

Here XGI is the reach set under double constraint

(Daryin and Kurzhanski, 2001):

XGI(t; t1; k) =
8<
:

t1Z
t
B(� )u(� ) d�

������ u(�) 2 UOL(k)
9=
;:

cf.: formulae for hard-bounds open-loop solvability sets:

W+(t; t1;M) = �M� Z t1
t P(� ) d�� _�Z t1

t Q(� ) d�;
W�(t; t1;M) =M _� Z t1

t Q(� ) d� � Z t1
t P(� ) d�:
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Alternated Integral

Integral Sums

Let T = ft = �0; �1; : : : ; �m�1; �m = t1g be a partition

of [t; t1] with �i = �i � �i�1 > 0.
At t = t1 set

W+T [k; �m] = W�T [k; �m] =M(k);
and then at each point of T

W+T [k; �i�1] = W+(k; �i�1; �i;W+T [�; �i]);
W�T [k; �i�1] = W�(k; �i�1; �i;W�T [�; �i]):

The sets

W+T [k; �0] = I+T (k; t; t1;M(�)) = I+T [k; t];
W�T [k; �0] = I�T (k; t; t1;M(�)) = I�T [k; t]

are upper and lower alternated sums, resp.

(Motion correction problem solvability domains)

8



Alternated Integral

Upper and Lower Integrals

Assumption : for every partition T , k > 0 andt 2 [t0; t1] alternated sums I+T [k; t] and I�T [k; t] are

convex.

If for some k > 0 there exists a Hausdorff limit I+[k; t]
of upper alternated sums

limdiamT !0h(I+T [k; t]; I+[k; t]) = 0;
then it is referred to as upper alternated integral .

Lower alternated integral I�[k; t] is defined the same

way using lower alternated sums.

I+[k; t] =\T I+T [k; t];
I�[k; t] =[T I�T [k; t]:

For all t 2 [t0; t1] and k > 0
I�[k; t] � W[k; t] � I+[k; t]:
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Alternated Integral

If both upper and lower integrals exist and they

coincide, then I[k; t] = I+[k; t] = I�[k; t] is the

alternated integral .

W[k; t] = I[k; t]:
The class of mappings M(�)! I(�; t; �;M(�)) is a

two-parameter semigroup:

I(k; t; t1;M(�)) = I(k; t; �; I(�; �; t1;M(�)));
t0 6 t 6 � 6 t1:

The same is true for mappings I+, I�, W.
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Alternated Integral

Convex Target Set

When target set M is convex, then the alternated

integral is also convex and classical convergence

theorems for hard bounds alternated integral

(Ponomarev and Rozov, 1978) may be applied.

Assumption A: there exist continuous positive

functions κ(t) and r(t) s.t.

8T I+T [κ(�i); �i] � Br(�i):
Assumption B: there exist continuous positive

functions κ(t), r(t) and a number " > 0 s.t.

diam T < " =) I�T [κ(�i); �i] � Br(�i):

11



Alternated Integral

Convex Target Set (cont)

Denote

k+0 (t) = inf �k �� 8T I+T (k; t; t1;M(�)) 6= ∅
	;

k�0 (t) = inf �k �� 9T I�T (k; t; t1;M(�)) 6= ∅
	:

Then

1. Under Assumption A, 8k > k+0 (t) 9I+[k; t];
2. Under Assumption B, 8k > k�0 (t) 9I�[k; t];
3. Under both assumptions k+0 (t) � k�0 (t) = k0(t) and

(a) I+[k; t] = I�[k; t] =W[k; t], k > k0(t);
(b) I+[k; t] = I�[k; t] = ∅, k < k0(t);
(c) I�[k0(t); t] � I+[k0(t); t];
(d) I+[k; t] =W[k; t], 8k > 0.
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Dynamic Programming Approach

The Value Function

V (t; x; k) = infU2UCL

sup�x(�)k(�)�2ZU (�)
d(x(t1);M(k(t1)));

where ZU (�) is the assembly of solutions to the

differential inclusion (��).
W[k; t] = fx 2 R

n j V (t; x; k) 6 0g;
V (t; x; k) = inf f� > 0 j x 2 W(k; t; t1;M�(�))g;

V (t; x; k) 6 d(x;W[k; t]):

x1; : : : ; xn

k

-�
�

d(x;M(k))

d((x; k);M)
M

x
k M(k)
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Dynamic Programming Approach

Control Synthesis

The value function is a viscosity solution to the

Hamilton–Jacobi–Bellman–Isaacs equation

Vt + minu2P(t) maxv2Q(t)
nhVx; B(t)u+ vi � Vkkuk2R(t)o = 0;

t0 6 t 6 t1; k > 0; x 2 R
n

with boundary condition

Vt + maxv2Q(t) hVx; vi
����k=0 = 0; t0 6 t 6 t1; x 2 R

n
and initial condition

V (t1; x; k) = d(x;M(k)); k > 0; x 2 R
n:

Optimal feedback strategy is

U�(t; x; k) = Argminu2P(t) hVx; B(t)ui � Vkkuk2R(t):
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Evolution Equation

A multifunction Z[k; t] : R� R ! R
n is said to be

weakly invariant if the following inclusion holds:

Z[k; t] �W+(k; t; t+ �;Z(�; t+ �)) =
= S
06
6k(Z[
;t+�]�XGI(t;t+�;k�
)) _� t+�R

t Q(�) d�:
Weak invariance is equivalent to the u-stability
(Krasovski and Subbotin, 1974).

Z[k; t] is weakly invariant iff it is a solution to the

evolution equation

lim�#0 ��1h+
 
Z[k; t] + �Q(t);

[
06
6k (Z[
; t+ �]�XGI(t; t+ �; k � 
))

!
= 0:

Solvability domain W[k; t] is the maximum solution

to the evolution equation.
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