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Abstract: This paper deals with problems of impulse control which allow control inputs
consisting not only of delta functions but also of their higher derivatives (impulses of higher
order). The controls are sought for in the form of feedback strategies which leads to the
application of respective generalized dynamic programming techniques, where the role of
traditional Hamilton–Jacobi–Bellman equations is taken by respective variational inequalities of
similar structure. Further proposed are physically realizable approximations which converge to
these ideal solutions. Since the ideal solutions allow to transfer a controllable system from one
given position to another in zero time, their approximations lead us to physically realizable “fast”
controls with piecewise constant realizations. Such feedback control inputs are then compared
with traditional bang-bang type strategies and turn out to be more robust. Computational
schemes for related problems of reachability and control synthesis are further described with
examples of damping oscillating systems of high order in minimal time being demonstrated.
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1. INTRODUCTION

The present paper deals with problems of impulse control.
It differs from other papers in this area due to the applica-
tion of input controls which allow not only delta-functions,
but also their higher derivatives (impulses of higher order).
Besides that the controls are sought for in the form of
closed-loop feedback strategies. We thus combine the prop-
erties of generalized functions with the dynamic nature of
feedback control. This leads to the application of general-
ized dynamic programming techniques based on reducing
the original problem to another one which is posed in
the class of solutions which allow only delta-impulses.
In such schemes the traditional Hamilton–Jacobi–Bellman
equation is substituted by variational inequalities of sim-
ilar structure. However these “ideal” solutions may not
allow a physical realization. In order to make the solutions
applicable we further introduce and array of physically
realizable approximations with piecewise-constant control
realizations. The approximations converge to the exact
ideal solutions. Thus, since the ideal controls allow tran-
sition of the original controllable system from one given
position to another in zero time, their physically realiz-
able approximations — the so-called “fast” controls —
allow to solve the same problem in finite time which is
arbitrary small. The suggested impulse control synthesis is
then compared with traditional bang-bang-type feedback
strategies, turning out to be robust in situations where
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the latter are not. Computational schemes for related
problems of reachability and closed-loop control are thus
conceived and examples of damping oscillations in high-
order systems within small time are demonstrated.

2. IMPULSE CONTROL PROBLEMS

2.1 The Ordinary Impulse Controls

We start by recalling the classical impulse control problem
(see Krasovski [1957], Neustadt [1964]). Consider a linear
system

ẋ(t) = A(t)x(t) + B(t)u(t), t0 ≤ t ≤ t1. (1)

Here x(t) ∈ R
n is the state vector, and u(t) is the control

input of form

u(t) =
dU(t)

dt
,

where U(·) is a function from the space BV ([t0, t1]; R
m)

of m-vector functions of bounded variation, Riesz and
Sz-.Nagy [1972]. Given matrix functions A(t) ∈ R

n×n,
B(t) ∈ R

n×m are continuous.

The problem is to minimize the variation of control

Var
[t0,t1]

U(·) → min (2)

subject to conditions x(t0) = x0, x(t1 + 0) = x1. The
initial time t0 and terminal time t1 are fixed. Here and
below we assume that control U(t) and trajectories x(t)
are left-continuous functions.

The problem (2) has been extensively studied in the
class of open-loop controls. In particular, the minimum
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Fig. 1. Approximations of delta-function and its deriva-
tives

variation is 1

min Var
[t0,t1]

U(·) = sup
p6=0

〈p, x1 − X(t1, t0)x0〉

maxt∈[t0,t1] ‖B
T (t)XT (t1, t)p‖

.

Furthermore, among the controls of minimum variation
there is at least one of the form 2

U(t) =

ℓ
∑

i=1

hiχ(t − τi), Var
[t0,t1]

U(·) =

ℓ
∑

i=1

‖hi‖,

where ℓ ≤ n, τi ∈ [t0, t1], and hi ∈ R
m. The corresponding

control input is u(t) =
∑ℓ

i=1 hiδ(t − τi). In other words,
the minimum in (2) is attained on a control which is the
sum of a finite number of impulses. This number does not
exceed the dimension of the system. Each of the impulses
is represented by a delta-function.

2.2 The Higher-Order Generalized Impulse Controls

The problem (2) may be generalized such that the control
may have not only terms with delta-functions, but also
with derivatives of delta-functions up to order k (see
Kurzhanski and Osipov [1969]). The delta-function and its
derivatives are limits of sequences of functions presented
in Fig. 1.

A rigorous mathematical formulation of the generalized
problem is given in Appendix A. Here we note that the
optimal open-loop controls of such problem have the form
1 X(t, τ) is the fundamental matrix of the homogeneous system,
i.e. the solution to the matrix differential equation ∂X(t, τ)/∂t =
A(t)X(t, τ), X(τ, τ) = I
2 χ(t) is the Heaviside step function, δ(t) = χ′(t) is Dirac’s delta-
function.

u(t) =
ℓ

∑

i=1

k
∑

j=0

hi,jδ
(j)(t − τi), ℓ ≤ n,

and its norm (which replaces the variation in case of
ordinary impulse controls) is defined as

ρ∗[u] =
ℓ

∑

i=1

γ∗[γ∗
0 [hi,0], . . . , γ

∗
k [hi,k]],

where γ, γ0, . . . , γk are norms in the corresponding finite-
dimension spaces, ∗ denotes the adjoint norm.

The generalized problem may be reduced to a problem of
type (2) as follows.

Assume that matrix functions A(t) and B(t) are k times
continuously differentiable on the interval (α, β) ⊃ [t0, t1].
Define functions Lj(t) by relations

L0(t) = B(t), Lj(t) = A(t)Lj−1(t) −
dLj−1

dt
, j = 1, k

and form the matrix B(t) = (L0(t) L1(t) · · · Lk(t)). For
a fixed h ∈ R

m the vector Lj(τ)h is equal to a jump
of the trajectory of (1) at time τ under control input
u(t) = (−1)jhδ(j)(t − τ).

Control inputs U(t) =
(

UT
0 (t) UT

1 (t) · · · UT
k (t)

)T
are

chosen in the class BV ([t0, t1]; R
m(k+1)) of functions of

bounded variations on the interval [t0, t1] with values in
R

m(k+1) (each function Uj(t) is with values in R
m). This

space is endowed with the following norm

Var
[t0,t1],G∗[·]

U(·) = sup
∑

i

G∗[U(ti+1) − U(ti)],

G∗(U) = γ∗[γ∗
0 [U0], . . . , γ

∗
k [Uk]].

The corresponding generalized control is

u(t) =

k
∑

j=0

(−1)j dj+1Uj

dtj+1
, ρ∗[u] = Var

[t0,t1],G∗[·]
U(·).

The generalized control problem is now equivalent to the
problem of type (2) for system ẋ(t) = A(t)x(t)+B(t)u(t).

3. THE FAST CONTROLS

3.1 The Ideal Zero-Time Controls

By applying the generalized control inputs system (1)
may be controllable in zero time (i.e. t0 = t1) even if
the dimension of control m is less than the state space
dimension n. Indeed, this is the case when im B(t1) = R

n.
Then the minimal norm of the control is

min ρ∗[u] = sup{〈x, p〉 | G(BT (tβ)p) ≤ 1}.

Here the supremum is taken over a bounded set since
ker B(t1) = {0}.

However, such zero-time controls are idealistic and in real
applications their physically realizable bounded approxi-
mations should be used. Such controls will allow a solution
of the two-point boundary control problem in arbitrary
small time.

3.2 The Realistic Fast Controls

Here we construct the so-called “fast” controls — bounded
approximations of the control which solves the problem



in zero time. For sufficiently small h > 0 (such that the
entire interval [t1, t1 + kh] lies within (α, β)) define scalar
functions 3

∆0
h(t) =

1

h
1[0,h](t), ∆j

h(t) =
1

h
(∆j−1

h (t) − ∆j−1
h (t − h)),

j = 1, . . . , k. These functions approximate the general-
ized functions δ(j)(t). Consider controls of form u(t) =
∑k

j=0 uj∆
j
h(t − t1), where uj ∈ R

m. Denote U =
(

uT
0 uT

1 · · ·uT
k

)

,

M
(j)
h (t) =

∫ t+kh

t

X(t + kh, τ)B(τ)∆j
h(τ − t)dτ,

Mh(t) =
(

M
(0)
h (t) M

(1)
h (t) · · · M

(h)
h (t)

)

,

then x(t1+kh) = X(t1+kh, t1)x(t1)+MhU and a natural
analogue of the generalized control problem with t0 = t1
is the following finite-dimension optimization problem:

{

G∗(U) → inf,

Mh(t1)U = x1 − X(t + kh, t1)x0 = c.
(3)

Theorem 1. Suppose that rankB(t1) = n, then the prob-
lem (3) is solvable.

Proof. As h → 0+, the functions ∆j
h(t) weakly converge

to δ(j)(t) in the space of distributions D∗
k,1[α, β]. Thus

M
(j)
h (t) → (−1)j ∂X(t, τ)B(τ)

∂τ

∣

∣

∣

∣

τ=t

= Lj(t),

and Mh(t) → B(t). Since by our assumption rankB(t1) =
n, then for sufficiently small h > 0 we also have
rankMh(t1) = n and the admissible controls do ex-
ist. Let Ū be an arbitrary admissible control. The set
{U |G∗(U) ≤ G∗(Ū), MhU = c} is a compact, and the
finite-dimensional norm G∗(U) is continuous. Therefore,
the problem (3) has a solution.

Next we calculate the minimum value in problem (3):

Vh = min
Mh(t1)U=c

max
G(q)≤1

〈q, U〉 = max
G(q)≤1

min
Mh(t1)U=c

〈q, U〉 =

= max{〈(M T
h (t1))

⊕q, c〉 | G(q) ≤ 1, q ∈ ker Mh(t1)}.

Here ⊕ denotes a pseudo-inverse matrix (see Lancaster
[1969]). We set p = (M T

h (t1))
⊕q, then

Vh = max{〈p, c〉 | G(M T
h (t1)p) ≤ 1}.

When h → 0, we have c → x1 − x0, M T
h (t1) → BT (t1).

Therefore, Vh → min ρ∗[u].

3.3 The Norm of Fast Controls

Here we assume that A(t) ≡ A, B(t) ≡ B. According to
Seidman and Yong [1997], the minimum variation of the
impulse control is asymptotically

N(∆) ∼ ∆t−k, k = min{j|x0 ∈ Rj}, (4)

where Rj = im
(

B AB · · ·AjB
)

.

It follows from (4) that for generalized controls (distribu-
tions) of order r

N(∆) ∼ ∆t−(k−r), k = min{j|x0 ∈ Rj}. (5)

(since the problem in this class of controls is equivalent to
the impulse control problem with matrix B replaced by
(B −AB · · · (−1)rArB)).
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Fig. 2. Dependence of minimum control norm on N — the
number of links in the oscillating system
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order of distributions taken as control inputs

Example 1. Consider an oscillating system














ẋi = xN+i, i = 1, N ;

ẋN+1 = x2 − 2x1;

ẋN+i = xi+1 + xi−1 − 2xi, i = 2, N − 1;

ẋ2N = xN−1 − xN + u

(6)

with norm G∗(u) = ‖u‖. Fig. 2 shows in logarithmic scale
how the minimum norm of impulse controls depends on
the dimension of the state space (which is 2N here).

In Fig. 3 we show how the minimum control norm depends
on the order of distributions used as control inputs. Here
N = 3.

Interpretation in terms of generalized controls. Suppose
that x0 ∈ Rk \ Rk−1. This means that the system is
controllable in zero time by generalized controls of order

(not less than) k of the form u(t) =
∑k

j=0 ujδ
(j)(t − t1),

where vectors uj solve the linear system
∑k

j=0 Ljuj =

x0 with matrices Lj = (−1)jAjB. Note that uk 6= 0
(otherwise controls of order k − 1 would suffice, which
contradicts our assumption).

3
1A(t) denotes the membership function of the set A, equal to 1 in

A and 0 in other points.



Now if the control is a distribution of order r < k,
then the terms with derivatives of order j greater than r
are replaced with finite-difference approximations of these
derivatives. The sum of coefficients of such approximations
are asymptotically of order ∆t−(j−r), which agrees with
(5).

A proof of (4). In (Seidman and Yong [1997]) the
estimate (4) follows from a general result for controls in
the class Lp. Here we give a straightforward (and more
simple) proof of this estimate directly for scalar impulse
controls (B = b ∈ R

n).

According to Neustadt [1964] the minimum norm of the
impulse control is attained on a control with at most n
impulses: u(t) =

∑n
j=1 ujδ(t − τj), t1 − ∆t ≤ τj ≤ t1.

We assume that x0 ∈ Rk \ Rk−1, and without any loss
of generality, that t1 = 0. Then the numbers uj solve the
linear system

∑n
j=1 e−τjA buj = −x0. Using the Taylor-

Maclaurin series for the matrix exponential, we have

n
∑

j=1

k
∑

s=0

(−τj)
s

s!
Asbuj + O(∆tk+1)u = −x0.

Vectors Asb, s = 0, . . . , k are linearly independent, so x0

may be expressed through them (with some coefficients
ξi):

n
∑

j=1

k
∑

s=0

(−τj)
s

s!
Asbuj + O(∆tk+1)u =

k
∑

s=0

ξsA
sb.

Taking coefficients of Asb on both sides, we come to the
linear system for uj :

n
∑

j=1

(−τj)
s

∆ts
uj + O(∆tk+1−s)u =

s!ξ

∆ts
, s = 0, . . . , k.

The norm of the operator in the left-hand side is bounded
for small ∆t uniformly over all choices of τj , the right-hand
side is of order ∆t−k. Therefore, the control should have
a norm which asymptotically is not less than C∆t−k.

To prove the upper bound, we consider particular instants
of time τj = − j

n
∆t:

n
∑

j=1

(

j

n

)s

uj + O(∆tk+1−s)u =
s!ξ

∆ts
, s = 0, . . . , k.

The operator M in the left-hand side is injective and
thus satisfies ‖Mu‖ ≥ C‖u‖. From here it follows that
N(∆t) ≤ C∆t−k.

The Realistic controls. Suppose that a physical real-
ization of the impulse u(t) = ujδ(t − tj) is a “column”
u(t) = ujh

−11[tj ,tj+h](t). Then the respective “jump” of
the trajectory (actually not a jump, but a fast change in
the trajectory) is

∆x(tj) = e−hAx(tj + h) − x(tj) =

= h−1

∫ tj+h

tj

e(tj−t)ABujdt = FhBuj ,

where Fh = h−1
∫ h

0
e−tAdt.

In the case of invertible matrix A, Fh = h−1A−1(I−e−hA).
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Fig. 4. The high-order realistic impulse controls
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Fig. 5. A realistic approximation of a generalized impulse
control of order 3.

We see that the problem with physical realization of
controls is equivalent to the problem of impulse control
with matrix B replaced by FhB.

In a similar way we replace a generalized impulse ujδ
(s)(t−

tj) with its physical realization, namely, with a finite-
difference approximation of s-th derivative of delta-

function, ∆
(s)
h (t − tj). The corresponding jump of x is

∆x(tj) = F
(s)
h Buj , where F

(s)
h = h−1(1 − e−hA)F

(s−1)
h

with F
(0)
h = Fh. We have F

(s)
h = h−s(1 − e−hA)sFh, and

for invertible matrix A, F
(s)
h = h−(s+1)(1− e−hA)s+1A−1.

It follows that the problem with realistic controls — finite-
difference approximations of generalized functions of order
k — is equivalent to the problem of impulse control

with matrix B replaced with
(

F
(0)
h B F

(1)
h B · · ·F

(k)
h B

)

.

In particular, the estimate 4 holds for this problem.

Note that F
(s)
h → As as h → 0.

Example 2. Fig. 4 shows a realization of the control for
Example 1 in the class of realistic impulses (h = 0.1).
One may observe that this control corresponds to a finite-
difference approximation of the fifth derivative δ(5)(t− τ).

Fig. 5 shows another realization of the control for Exam-
ple 1, now in the class of realistic controls of order r = 3.



This control has only three (generalized) impulses, but is
also an approximation of the fifth derivative δ(5)(t − τ).

The selection of step h here and in other calculations must
be correlated with the sampling rate. It may also depend
on requirements given in advance for practical reasons.

4. THE CLOSED-LOOP CONTROL

4.1 The Dynamic Programming Approach

In order to formulate the principle of optimality, we
consider the problem of minimizing a functional of Mayer–
Bolza type:

ρ∗[u] + Φ(x(t1 + 0)) → inf . (7)

The previously considered problems are particular cases of
(7) if the function Φ is chosen as 4 Φ(x) = I (x|{x1}).

Denote the minimum value in problem (7) as V (t0, x0) =
V (t0, x0; t1,Φ(·)). The principle of optimality holds in the
form of a semi-group property

V (t0, x0; t1,Φ(·)) = V (t0, x0; tǫ, V (tǫ, ·; t1,Φ(·))),

where t0 ≤ tǫ ≤ t1.

The value function V (t, x) satisfies a quasi-variational in-
equality (Bensoussan and Lions [1982]; Daryin, Kurzhan-
ski and Seleznev [2005]) (in the points of non-smoothness
of the value function the inner products stand for the
respective directional derivatives)

min{H1(t, x, Vt, Vx),H2(t, x, Vt, Vx)} = 0, (8)

V (tβ , x) = V (tβ , x; tβ ,Φ(·)).

H1(t, x, ξt, ξx) = ξt + 〈ξx, A(t)x〉,

H2(t, x, ξt, ξx) = min
u∈Rm(k+1)

{〈ξx,B(t)u〉 + 1 | G∗(u) ≤ 1} =

1 − G(BT (t)Vx) = 1 − γ[γ0[L
T
0 (t)Vx], . . . , γk[LT

k (t)Vx]].

Here the Hamiltonian H1 corresponds to motion without
control (dU = 0), and H2 accounts for the jumps gener-
ated by control impulses. Therefore, equation (8) may be
interpreted as follows: either H1 = 0 and in the respective
on-line position one may choose zero control (no jump), or
H2 = 0 and the control will have an impulse.

4.2 A Formalization of the Closed-Loop System

Although a feedback control strategy may be formally
derived from the Hamilton–Jacobi–Bellman equation, it
is not clear what a closed-loop system would be under
such control. A possible formalization for ordinary impulse
controls is based on the double constraint approach from
(Daryin, Kurzhanski and Seleznev [2005]).

Definition 1. The pair of functions U = {u(t, x;µ),
θ(t, x;µ)} (“magnitude” and “duration”), such that

u(t, x;µ) ∈ S1 ∪ {0}, u(t, x;µ)
µ→∞
→ u∞(t, x),

θ(t, x;µ) ≥ 0, µθ(t, x;µ)
µ→∞
→ m∞(t, x),

is called the impulse feedback control strategy.

The component u(t, x) is the direction of the control
impulse which is issued on interval [t, t+θ(t, x)]. Note that
as µ → ∞, we have θ → 0 and in the limit one has a delta-
function as control.
4 By I (x|A) we denote the indicator function of a set A, which is
zero on this set and equal to infinity elsewhere.
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Definition 2. Fix a control strategy U , number µ > 0 and
a partition t0 = τ0 < τ1 < . . . < τs = t1 of interval [t0, t1].
An approximating motion of the system (1) is the solution
to the differential equation

τ∗
i = τi ∧ θ(τi−1, x∆(τi−1);µ),

ẋ∆(τ) = µB(t)u(τi−1, x∆(τi−1);µ), τi−1 < τ < τ∗
i ,

x∆(τi) = x∆(τ∗
i ).

Number σ = max{τi − τi−1} is the diameter of the
partition.

Definition 3. A constructive motion of system (1) under
feedback control U is a piecewise continuous function
x(t), which is the pointwise (weak) limit of approximating
motions x∆(t) as µ → ∞ and σ → 0.

4.3 Impulses vs Bang-Bang Controls

In Fig. 6 we compare bang-bang controls from Pontrya-
gin’s Maximum Principle with impulse controls in terms of
the L1 norm. We observe that the norm of impulse controls
is twice lower than that of bang-bang controls.

As the control time, t1 − t0, decreases, the norm of
the impulse control grows, and so does the minimum
possible amplitude of bang-bang controls. Consider such
a bang-bang feedback control with minimum amplitude
µ. Suppose that the switching of bang-bang control occurs
after each θ time units (θ ≪ t1−t0). Then the error x(t1)−
x1 will be of order θµ, which may be large unless θ ≪ µ−1.
In other words, to get such feedback control functioning
properly, one has to ensure very high sampling rate, which
may be infeasible. The proposed formalization of impulse
control is free of the indicated issue (although too low
sampling rate may result in increase of the variation of
control).

5. ON NUMERICAL SCHEMES

To avoid calculation of the exact value function, its upper
and lower bounds may be described through quadratic
approximations similar to those developed in ellipsoidal
calculus (Kurzhanski and Vályi [1997], Kurzhanski and
Varaiya [2000]). Such results may be then applied to the
calculation of forward and backward reach sets under



generalized impulse controls of the present paper. An
ellipsoidal bound for reach sets under impulse controls is
presented in detail in (Daryin and Kurzhanski [2007]).

6. CONCLUSION

In this paper we presented an approach to problems
of generalized impulse feedback control in the class of
inputs which allows not only delta-functions, but also
their higher derivatives as controls. We also introduce
the notion of realizable fast controls which solve the
problems of this paper in arbitrary small “nano”-time. The
suggested generalized inputs taken as virtual controls may
be also relevant for systems with jumps and for on-line
resets of the system structure and/or position, Kurzhanski
[2006]. Further work is expected to include calculation
and formalization of impulse feedback controls for systems
under uncertainty, as well as the treatment of complex
state constraints.

Appendix A. THE GENERALIZED IMPULSE
CONTROL PROBLEM

Here the control u(t) is chosen from the class D∗
k,m[α, β]

of continuous linear functionals over the linear normed
space Dk,m[α, β] (see Gelfand and Shilov [1964], Schwartz
[1950]). The latter consists of k times differentiable func-
tions φ(t) : [α, β] → R

m with support contained in [α, β].
The norm in Dk,m is defined as

ρ[φ] = max
t∈[α,β]

γ[γ0(φ(t)), γ1(φ
′(t)), . . . , γk(φ(k)(t))],

where γk, γ are finite-dimensional norms in spaces R
m and

R
k+1. The norm ρ[φ] determines its adjoint norm ρ∗[u] in

the space D∗
k,m[α, β]. Hence the control is a distribution

of order ku ≤ k. The trajectories of the system (1) are
distributions from D∗

k−1,n[α, β].

The admissible controls u(t) are distributions from
D∗

k,m[α, β] for which there exists a distribution x(t) ∈

D∗
k−1,n[α, β] satisfying ẋ(t) = A(t)x + B(t)u + f (α) −

f (β) with support of x(t) enclosed in [t0, t1], where α <

t0 ≤ t1 < β. Here f (α) and f (β) are distributions from
D∗

k,n[α, β], concentrated at points t0 and t1 respectively.
These distributions may be interpreted as initial and final
conditions for the trajectory x(t) and may be represented

as f (α) =
∑k

j=0 αjδ
(j)(t − t0), f (β) =

∑k
j=0 βjδ

(j)(t − t1).

Recall that any distribution u ∈ D∗
k,m[α, β] may be written

as (see Gelfand and Shilov [1964])

〈u, φ〉 =

k
∑

j=0

∫ β

α

djφ

dtj
dUj(t),

where Uj are functions of bounded variation on [α, β],
taking values in R

m and constant when α ≤ t ≤ t0,
t1 < t < β.

A rigorous formulation of problem 7 sounds as follows:
for a given distribution f (α) and a time interval [t0, t1]
find a distribution f (β) and an admissible control u(t) ∈
D∗

k,m[α, β] minimizing the functional J(u, f (β)) = ρ∗[u] +

φ(f (β)). Here φ(f) is a convex, bounded from below
terminal function.
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