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1. INTRODUCTION

It is usual that one considers problems of control
under uncertainty assuming that the control and
the disturbance are restricted by constraints of
the similar type. For example, both are subject
either to hard bounds, or soft bounds. However,
in real applications sometimes arises the need to
employ different constraint types for control and
disturbance, or to impose several constraints si-
multaneously. This reflects applications with si-
multaneous restrictions on fuel resources and the
ability of maneuvering.

In the present article a problem of control syn-
thesis under uncertainty is considered for a linear
system, where the control is subject to double con-
straints, namely hard bound and soft bound, and
the disturbance is restricted only by hard bound.
This allows to account both for the constructive
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properties of the control device which allow only
certain range of control values, and for the limited
amount of resources used by control.

A problem with double constraints on control in
the absence of uncertainty was the subject of
(Krasovski, 1965; Bondarenko et al., 1965; Dar’in
and Kurzhanskii, 2001). A particular case of the
problem under uncertainty was investigated in
(Ledyaev, 1985). Here the general case is consid-
ered.

The problem is treated by the approach (Kurzhan-
ski, 1999; Kurzhanski and Melnikov, 2000) which,
through the use of dynamic programming con-
cepts (Bellman, 1957; Isaacs, 1965), combines
the theory of the alternated integral (Pontryagin,
1967; Pontryagin, 1980) and the control theory
of N. N. Krasovski (Krasovski, 1971; Krasovskii
and Subbotin, 1988). This allows to develop con-
structive techniques aiming at solving the problem
“to the end”, that is, to devise effective numerical
algorithms (for example, based on the ellipsoidal
calculus (Kurzhanski and Valyi, 1997; Kurzhanski
and Varaiya, 2002)). Other approaches to control



under uncertainty belong to Başar and Bernhard
(1991), Başar and Olsder (1982), Mitchell and
Tomlin (2003). The considered problem may be
interpreted as a special case of the viability prob-
lem (Aubin, 1991).

2. THE PROBLEM

Consider the controlled system
{

ẋ(t) = A(t)x(t) + B(t)u + C(t)v,

k̇(t) = −‖u‖2
R(t)

(1)

on time interval T = [t0, t1]. Here u ∈ R
np is the

control and v ∈ R
nq is the unknown but bounded

disturbance, both subject to hard bounds

u ∈ P(t), v ∈ Q(t), ∀t ∈ T. (2)

There is also an additional state constraint

k(t) > 0, ∀t ∈ T (3)

which is equivalent to a soft bound on control (this
follows by integrating the second equation of (1)):

∫ t1

t0

‖u(t)‖2
R(t) dt 6 k(t0). (4)

The set-valued mappings P(t), Q(t) are assumed
continuous in the Hausdorff metric, and R(t) is a
positive definite continuous matrix function. The
norm ‖u‖2

R is equal to 〈u, Ru〉.

After a change of coordinates (see Kurzhanski and
Valyi, 1997) the system (1) may be rewritten in a
simplified form with A(t) ≡ 0, C(t) ≡ I, i.e.

{

ẋ(t) = B(t)u + v,

k̇(t) = −‖u‖2
R(t),

t ∈ T = [t0, t1].

The control u may be chosen from one of the
following classes.

(1) Feedback strategies UCL are set-valued func-
tions U(t, x, k): [t0, t1] × R

n × R → conv R
n,

measurable in t and upper semicontinuous in
(x, k), satisfying the conditions U(t, x, k) ⊆
P(t), U(t, x, k)|k<0 = {0}, which ensure the
adherence to hard bound (2) and state con-
straint (3).

(2) Open-loop controls UOL are measurable func-
tions satisfying a.e. (2) and (4). This class
actually depends on initial reserve: UOL =
UOL(k(t0)).

Controls from UCL ensure the existence of so-
lutions to the following differential inclusion
(Filippov, 1988):
[

ẋ(t)

k̇(t)

]

∈

[

conv
⋃

u∈U

{[

B(t)u

−‖u‖2
R(t)

]}

]

+ Q(t). (5)

Here the closed convex hull in the right-hand side
does not enhance the capabilities of control since
it only adds “non-effective” points.

Definition 1. Let N be a set in space R
n+1 of

variables (x, k). The values of the set-valued map-
ping N (k) = {x ∈ R

n | (x, k) ∈ N} will be called
cross-sections of the N . (Since the set N can be
reconstructed from the set-valued mapping N (·)
and vice versa, we shall sometimes treat N and
N (·) as the same item.)

Let M be a non-empty closed target set satisfying
the following assumptions:

A1 M(k1) ⊆ M(k2), if k1 6 k2;
A2 M(k) = ∅ if k < 0;
A3 M(k) are compact.

The class of such mappings R → conv R
n will be

denoted as M. In some cases assumption A3 will
be replaced by a stronger one

A′
3 M is convex.

The corresponding class of mappings is M
′.

Problem 2. For a given target set M ∈ M find
the solvability domain W [t0] ⊆ R

n+1 and a feed-
back strategy U(t, x, k) ∈ UCL, such that all
the solutions to differential inclusion (5) which
start at any position (t, x(t), k(t)), t0 6 t 6 t1,
(x(t), k(t)) ∈ W [t] end up in the target set: x(t1) ∈
M(k(t1)). (Notation W [t] = W(t; t1,M) some-
times will be used to underline the dependence of
the solvability domain on the target set and the
terminal time. The cross-sections of W [t] will be
denoted by W [k, t] = W(k, t; t1,M(·))).

3. THE ALTERNATED INTEGRAL

Definition 3. The max-min type solvability do-

main W+(t; t1,M) is the set of positions (x, k) ∈
R

n+1, such that for every disturbance v(·) there
exists an admissible open-loop control u(·) ∈
UOL(k) ensuring x(t1) ∈ M(k(t1)) whenever
x(t) = x, k(t) = k.

Similarly, the min-max type solvability domain

W−(t; t1,M) is the set of positions for which
there exists an admissible open-loop control which
ensures the inclusion x(t1) ∈ M(k(t1)) for all the
disturbances v(·).

Lemma 4. The following inclusion holds:

W−(t; t1,M) ⊆ W(t; t1,M) ⊆ W+(t; t1,M),

and the cross-sections of min-max and max-min
solvability domains may be expressed as

W+(k, t; t1,M(·)) =





⋃

06γ6k

(M(γ)−

−XGI(t, t1, k − γ))

]

−̇

∫ t1

t

Q(τ) dτ, (6)



W−(k, t; t1,M(·)) =
⋃

06γ6k

[(

M(γ) −̇

−̇

∫ t1

t

Q(τ) dτ

)

−XGI(t, t1, k − γ)

]

, (7)

where XGI denotes the reachability set under
double constraint from the origin (Dar’in and
Kurzhanskii, 2001):

XGI(t, t1, ∆k) =

{

∫ t1

t

B(τ)u(τ) dτ

∣

∣

∣

∣

∣

∫ t1

t

‖u(τ)‖2
R(τ) dτ 6 ∆k, u(τ) ∈ P(τ)

}

,

and the sign “−̇” denotes the geometric (Minkowski)
difference of convex sets.

Note that the union in (6), (7) may be actually
taken over the smaller interval [0∨k−δ, k], where

δ =

∫ t1

t

∣

∣

∣

∣

R
1
2 (τ)P(τ)

∣

∣

∣

∣

dτ = O(t1 − t).

Now define the alternated sums (6), (7). Let T be
a partition of [t, t1]: t = τ0 < τ1 < . . . < τm = t1,
σi = τi − τi−1 > 0. At time t1 set

W+
T [k, τm] = W−

T [k, τm] = M(k),

and then in each previous instant

W+
T [k, τi−1] = W+(k, τi−1; τi, W

+
T [·, τi]),

W−
T [k, τi−1] = W−(k, τi−1; τi, W

−
T [·, τi]).

The sets at time t,

W+
T [k, τ0] = I+

T (k, t; t1,M(·)) = I+
T [k, t],

W−
T [k, τ0] = I−

T (k, t; t1,M(·)) = I−
T [k, t]

are the upper and lower alternated sums.

In general, the sets (6), (7) (and therefore the
alternated sums) may be not convex. To overcome
this difficulty the following assumption is intro-
duced:

A4 For each partition T the mappings I+
T [·, t]

and I−
T [·, t] belong to class M.

This assumption allows to consider the alternated
sums as mappings M → M, which further enables
to state the principle of optimality in form of the
semigroup property for the solvability domain.

Note that if M is convex, i.e. it belongs to M
′,

then the assumption A4 is always true and the
alternated sums are mappings M

′ → M
′.

Definition 5. If for some k > 0 the following
Hausdorff limit exists:

lim
diam T →0

h(I+
T [k, t], I+[k, t]) = 0,

and does not depend on the sequence of partitions,
then I+[k, t] = I+(k, t; t1,M(·)) is called the
upper alternated integral.

Definition 6. The lower alternated integral I−[k, t] =
I−(k, t; t1,M(·)) is defined similarly to the Defi-
nition 5 as the limit of lower alternated sums.

Lemma 7. The following inclusions are true:

I−[k, t] ⊆ W [k, t] ⊆ I+[k, t], t ∈ T, k > 0.

Definition 8. If the upper and lower alternated
integrals do coincide, then the set I[k, t] =
I+[k, t] = I−[k, t] is said to be the alternated

integral.

An important property of the constructed set-
valued integrals is the validity of the principle of

optimality (Bellman, 1957) expressed in the form
of the semigroup property. To formulate the latter,
it is necessary to consider the alternated integral
as an operator on M, parameterized by initial and
terminal times, t0 and t1.

Lemma 9. For the set of mappings M(·) →
I(·, t; τ,M(·)) the semigroup property is true:

I(k, t; t1,M(·)) = I(k, t; τ, I(·, τ ; t1,M(·))),

for t ∈ T , τ ∈ [t, t1], k > 0. The same is also true
for both upper and lower alternated integrals I+

and I−, in case they do not coincide.

Now consider the case when the target set M is
convex. Then the open-loop solvability domains
are also convex, and in space R

n+1 they may be
found due to the following formulae (Pontryagin,
1967; Pontryagin, 1980):

W+(t; t1,M) =

(

M−

∫ t1

t

B(τ,P(τ)) dτ

)

−̇

−̇

∫ t1

t

Q(τ) dτ,

W−(t; t1,M) =

(

M−̇

∫ t1

t

Q(τ) dτ

)

−

−

∫ t1

t

B(τ,P(τ)) dτ,

B(t,U) =

{(

B(t)u

−‖u‖2
R(t)

) ∣

∣

∣

∣

u ∈ U

}

.

The following assumptions are used to prove the
convergence of alternated sums in this case (cf.
Kurzhanski and Melnikov, 2000; Ponomarev and
Rozov, 1978):

A5 There exist continuous positive functions
κ(t) and r(t), t0 6 t 6 t1, such that



I+
T [κ(τi), τi] ⊇ Br(τi)

for any partition T =

{τ0, . . . , τm} and i = 0, . . . , m.
A6 There exist continuous positive functions

κ(t) and r(t), t0 6 t 6 t1, and a number
ε > 0, such that I−

T [κ(τi), τi] ⊇ B
r(τi)

for

any partition T = {τ0, . . . , τm} of diameter
less than ε, i = 0, . . . , m.

Theorem 10. Let M(·) ∈ M
′. Denote

k+
0 (t) = inf

{

k
∣

∣ ∀T I+
T (k, t; t1,M(·)) 6= ∅

}

,

k−
0 (t) = inf

{

k
∣

∣ ∃T I−
T (k, t; t1,M(·)) 6= ∅

}

.

Then

(1) under assumption A5 for any k > k+
0 (t) the

upper alternated integral exists;
(2) under assumption A6 for any k > k−

0 (t) the
lower alternated integral exists;

(3) under both assumptions k+
0 (t) ≡ k−

0 (t) =
k0(t), and
(a) when k > k0(t), upper and lower alter-

nated integrals coincide, and are equal to
the solvability domain:

I+[k, t] = I−[k, t] = W [k, t], t ∈ T ;

(b) when k < k0(t), upper and lower alter-
nated integrals are empty;

(c) when k = k0(t), the following inclusion
holds: I−[k0(t), t] ⊆ I+[k0(t), t], t ∈ T ;

(4) the upper alternated integral coincides with
the solvability domain: I+[k, t] = W [k, t],
k > 0, t ∈ T .

4. THE DYNAMIC PROGRAMMING
EQUATION

The problem of guaranteed control synthesis (2)
may be cast as an optimization one if the control
is required to minimize the distance to the target
set regardless of disturbance. This is formalized
by introducing the following value function

V (t, x, k) = inf
U∈UCL

sup
z(·)∈Z

d(x(t1),M(k(t1))), (8)

where z(t) = (x(t), k(t)), Z is the assembly of
solutions to the differential inclusion (5) with
control U .

Problem 11. Calculate the value function V (t, x, k)
and find a minimizing feedback strategy U(t, x, k) ∈
UCL in (8).

It is clear that the solvability domain is the level
set of the value function:

W [k, t] = {x ∈ R
n | V (t, x, k) 6 0}.

The next result follows from the theory of
minimax and viscosity generalized solutions to
Hamilton–Jacobi equations (Subbotin, 1995; Flem-
ing and Soner, 1993):

Theorem 12. The value function (8) is the mini-
max (viscosity) solution to the Hamilton–Jacobi–
Bellman–Isaacs equation

∂V

∂t
+ min

u∈P(t)
max

v∈Q(t)

{

〈

∂V

∂x
, B(t)u + v

〉

−

−
∂V

∂k
‖u‖2

R(t)

}

= 0, (9)

t0 6 t < t1, k > 0, x ∈ R
n, with boundary

condition

∂V

∂t
+ max

v∈Q(t)

〈

∂V

∂x
, v

〉
∣

∣

∣

∣

k=0

= 0, (10)

t0 6 t 6 t1, x ∈ R
n, and initial condition

V (t1, x, k) = d(x,M(k)), k > 0, x ∈ R
n. (11)

The boundary condition (10) arises here in a natu-
ral way and does not cause the overdetermination
of the system. It may be written in an explicit
form:

V (t, x, 0) = max
v(τ)∈Q(τ)

d

(

x +

∫ t1

t

v(τ) dτ,M(0)

)

.

In general case this becomes non-smooth when
t < t1, thus the value function would not be a
classical solution to (9) even if V (t1, x, k) were
smooth.

Theorem 13. Let Mµ(k) = M(k) + µB1, where
B1 is a unit ball in R

n. Then

V (t, x, k) = inf {µ > 0 | x ∈ W(k, t; t1,Mµ(·))}.

If the function function is calculated, the optimal
feedback strategy is the minimizer in (9):

U∗(t, x, k) = Arg min
u∈P(t)

{

〈

∂V

∂x
, B(t)u

〉

−

−
∂V

∂k
‖u‖2

R(t)

}

. (12)

Since ∂V
∂k

6 0, the function under the minimum
sign is convex, thus U∗(t, x, k) is a convex set.
Continuity of the value function ensures that the
mapping U∗(t, x, k) is upper semicontinuous in x

and k. Therefore this feedback strategy guarantees
existence of solutions to differential inclusion (5)
on the interval [t0, t1].

In general case calculating the value function
exactly is computationally hard. However, the
following upper bound may be useful:

Theorem 14. If the alternated integral exists,
then the following estimate holds for those k and
t where I[k, t] 6= ∅:

V (t, x, k) 6 d(x, I[k, t]). (13)



5. THE EVOLUTION EQUATION

Definition 15. A set-valued mapping (k, t) →
Z[k, t] is called weakly invariant, if for t0 6 t < t+
σ 6 t1 the following inclusion holds:

Z[k, t] ⊆ W+(k, t; t + σ,Z[·, t + σ]) =

=
⋃

06γ6k

(Z[γ, t + σ]−

−XGI(t, t + σ, k − γ)) −̇

∫ t+σ

t

Q(τ) dτ. (14)

Remark 16. The notion of weak invariance is in
fact equivalent to the u-stability property in
the theory of N. N. Krasovski (Krasovski, 1971;
Krasovskii and Subbotin, 1988).

The solvability tube W [k, t] is weakly invariant,
because its values are certainly contained in the
max-min open-loop solvability set. This is also
the maximal weakly invariant set-valued mapping
with respect to inclusion satisfying Z[k, t1] ⊆
M(k).

Replacing in (14) the integral of Q(τ) by the
set σQ(t) (with O(σ2) accuracy) and proceed-
ing to the limit, the following evolution equation

(Panasyuk and Panasyuk, 1980; Kurzhanski and
Nikonov, 1993) for Z[k, t] is derived:

lim
σ↓0

σ−1h+

(

Z[k, t] + σQ(t),
⋃

06γ6k

Z[γ, t + σ]−

−XGI(t, t + σ, k − γ)

)

= 0. (15)

The evolution equation (15) may be simplified.
For sufficiently small values of σ the reachability
set under double constraint XGI may be approx-
imated by the intersection of reachability sets
under single constraint (one for hard bound and
one for soft bound).

Lemma 17. Let the following conditions hold:

(1) 0 ∈ int B(t)P(t);
(2) the support function ρ(` | P(t)) and function

R(t) are Lipschitz continuous in t.

Then

h(XGI(t, t + σ, δ),

XG(t, t + σ) ∩ XI(t, t + σ, δ)) = O(σ2), (16)

where XG and XI are the reachability sets under
hard and soft bound respectively:

XG(t, t + σ) =

∫ t+σ

t

B(τ)P(τ) dτ,

XI(t, t + σ, δ) = E

(

0, δ

∫ t+σ

t

R−1(τ) dτ

)

.

By applying (16) one comes to the following
statement.

Theorem 18. The evolution equation (15) is equiv-
alent to

lim
σ↓0

σ−1h+

(

Z[k, t] + σQ(t),
⋃

06γ6k

Z[γ, t + σ]−

− σB(t)P(t) ∩ E
(

0, (k − γ)σR−1(t)
)

)

= 0.

6. THE SYNTHESIZING CONTROL

Theorem 19. Let Z[k, t] be a weakly invariant set-
valued mapping with support function continu-
ously differentiable in t and k. Then the function
G(t, x, k) = d2(x,Z[k, t]) satisfies the following
differential inequality:

min
u∈P(t)

max
v∈Q(t)

dG

dt
(t, x(t), k(t)) 6 0. (17)

The latter means that the function G(t, x, k) is
the upper viscosity solution to (9).

Definition 20. The feedback strategy UZ , which
is the minimizer in (17), is called the extremal

strategy for Z[k, t].

It consists of all the vectors u∗ ∈ P(t) satisfying

〈`0, B(t)u∗〉 + ‖u∗‖2
R(t)ρk(t, k, `0) =

min
u∈P(t)

{

〈`0, B(t)u〉 + ‖u‖2
R(t)ρk(t, k, `0)

}

, (18)

where ρ(t, k, `) = ρ(` | Z[k, t]), and `0 = `0(t, x, k)
is the maximizer in

〈`, x〉 − ρ(` | Z[k, t]) − 1
4‖`‖

2 → max .

Theorem 21. Let (x(t), k(t)) be a solution to the
differential inclusion (5) under control UZ . If
x(t) ∈ Z[k(t), t], then x(τ) ∈ Z[k(τ), τ ] for t 6

τ 6 t1.

When Z[k, t1] ⊆ M, the corresponding extremal
strategy UZ solves the problem 2 of guaranteed
control synthesis. Thus choosing Z[k, t] = W [k, t]
one has the solution to problem 2, namely the
feedback strategy UW .

To construct the feedback strategy UW it is not
necessary to calculate the value function itself,
but only to find its zero level set. (Note that the
optimal feedback strategy U∗ in (12) is expressed
in terms of the gradient of the value function, i.e.
in also terms of its level sets.) Comparing (13)
and (17) shows that U∗ and UW both guarantee
the same thing: if a trajectory is started on some
distance from W [k, t], it will be on the same or
smaller distance from M at the terminal time.
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Fig. 1. An Example of Control Synthesis

Example 22. An example feedback strategy is de-
picted in figure 1. This feedback strategy is con-
structed for a problem with x ∈ R

1. The gray-
shaded area is the solvability domain at the start
time, presented in the coordinates (x, k). The
arrows indicate the directions of the vector field
(u,−‖u‖2

R). The bundles of arrows inside the solv-
ability domain mean that the control may choose
any direction inside P(t).

7. CONCLUSION

The solution to the control synthesis problem is
expressed in terms of the solvability tube, which
describes the feasibility of the online position to be
steered to the terminal target set. The solvability
domain is described in terms of a set-valued inte-
gral which is a modification of L. S. Pontryagin’s
scheme to the case of double constraints. The dy-
namic programming equation here allows a viscos-
ity solution, through which the required control
strategy may be derived. Numerical schemes may
be based on approximating the set-valued solu-
tions to the evolution equation for the solvability
tube.
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Birkhäuser. Boston.
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