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Introduction

Dynamic programming (DP) is a key tool in understanding
and solving feedback control problems.

Direct application of DP methods may lead to high
computation load.

But: avoiding DP due to computational complexity is an
“infantile disorder”.

Instead: modify solutions to require less computation. Here
— ellipsoidal approximations.



The Ellipsoidal Approximations

Definition

An ellipsoid
E (q,Q) = {x | ‖x − q‖2

Q ≤ 1}

q — center Q — configuration matrix normx2
Q = 〈x ,Qx〉

Ellipsoidal approximation = approximating value function by
quadratic form:

V (t, x) ≤ (or ≥)〈x − q,Q(x − q)〉 + k(t).



The Ellipsoidal Toolbox

Ellipsoidal toolbox (A. A. Kurzhanskiy and P. Varaiya):

http://code.google.com/p/ellipsoids/

ET is a part of Multi-Parametric Toolbox (MPT)

http://control.ee.ethz.ch/~mpt/

http://code.google.com/p/ellipsoids/
http://control.ee.ethz.ch/~mpt/


The Comparison Principle

Deriving ellipsoidal approximations:

Inductive approach

based on ellipsoidal calculus.

Deductive approach

directly from HJB equation, basing on Comparison Principle.



The Comparison Principle

For a system of type

ẋ = f (t, x , u), u(t) ∈ P(t),

the solution V0(t, x) to the HJB equation

V0t + H0(t, x ,V0x) = 0,

produces backward reach set W [t] = W (t, ϑ,M ) as its level set.

Here
H0(t, x , p) = min{(p, f (t, x , u)) | u ∈ P(t)}.



The Comparison Principle

Theorem

Suppose that given are H+(t, x , p) and w(t, x) ∈ C1, µ(t) ∈ L,
which satisfy the inequalities

H(t, x , p) ≤ H+(t, x , p), ∀{t, x , p},

wt + H+(t, x ,wx) ≤ µ(t).

Then there exists an upper estimate

X+[t] ⊇ X [t],

where
X+[t] =

=

{

x
∣

∣

∣ w(t, x) ≤

∫ t

t0

µ(s)ds + max
x∈X 0

w(t0, x)

}

.



Backward Reach Set Approximation

A similar theorem is true for the backward reach sets.

Theorem

Suppose there exists function H−(t, x , p) and functions
w0(t, x) ∈ C1, ν(t) ∈ L1 which satisfy inequalities

H0(t, x , p) ≥ H−(t, x , p), ∀{t, x , p},

w0
t + H−(t, x ,w0

x ) ≥ ν(t).

Then there exists an upper estimate

W+[t] ⊇ W [t],

where
W+[t] =

=

{

x
∣

∣

∣
w0(t, x) ≤ max

x∈M
w0(t1, x) −

∫ t

t0

ν(s)ds

}

.



Internal Approximations

For internal approximations of sets W [t] we have to approximate
from above the value function V0(t, x) which solves the same
HJB equation with boundary condition V (t0, x).

Then the following assertion is true.



Internal Approximations

Theorem

Suppose that there exists a function h(t, x , p),

h(t, x , p) ≤ H(t, x , p), ∀t, x , p,

together with a continuously differentiable function ψ(t, x) which
satisfies equation

ψt + h(t, x , ψx ) = 0, ∀t ∈ [t0, ϑ]

with boundary condition ψ(t0, x) = V (t0, x).
Then the next inclusion is true

W−[t] = {x | ψ(t, x) ≤ 0} ⊆ W [t],

where W [t] = {x | V0(t, x) ≤ 0}.



The Impulse Control Problem

ẋ(t) = A(t)x(t) + B(t)u(t)

t ∈ [t0, t1] — fixed time interval

Problem (1, a Mayer–Bolza Analogy)

Minimize J(U(·)) = Var
[t0,t1]

U(·) + ϕ(x(t1 + 0))

over U(·) ∈ BV [t0, t1] with x(t) generated by control input

u(t) =
dU

dt

starting from x(t0 − 0) = x0.



The Impulse Control Problem

Known result (N. N. Krasovski [1957], L. W. Neustadt [1964]):

u(t) =

n
∑

i=1

hiδ(t − τi)

Important particular case: ϕ(x) = I (x | {x1})
— steer from x0 to x1 on [t0, t1].

I (x | A) =

{

0, x ∈ A;

+∞, x 6∈ A.



The Value Function

Definition

The minimum of J(U(·)) with fixed initial position x(t0 − 0) = x0

is called the value function:

V (t0, x0) = V (t0, x0; t1, ϕ(·)).

How to find the value function?

Integrate the HJB equation.

An explicit representation (convex analysis).

Ellipsoidal approximation (comparison principle).



The Dynamic Programming Equation

The value function V (t, x ; t1, ϕ(·)) satisfies
the Principle of Optimality

V (t0, x0; t1, ϕ(·)) = V (t0, x0; τ,V (τ, ·; t1, ϕ(·))), τ ∈ [t0, t1]

The value function it is the solution to the
Hamilton–Jacobi–Bellman variational inequality:

min {H1(t, x ,Vt ,Vx), H2(t, x ,Vt ,Vx)} = 0,

V (t1, x) = V (t1, x ; t1, ϕ(·)).

H1 = Vt+〈Vx ,A(t)x〉, H2 = min
u∈S1

〈Vx ,B(t)u〉+1 = −
∥

∥

∥BT (t)Vx

∥

∥

∥+1.



The Control Structure

(t, x)H1(t, x) = 0 H2(t, x) = 0

jump

U(τ) = α · d · χ(τ − t)

dU(t) = 0
wait choose jump direction

d = −BTVx

choose jump amplitude

minα ≥ 0 : H1(t, x + αd) = 0



The Explicit Formula

V (t0, x0) = inf
x1∈Rn

{ϕ(x1) + sup
p∈Rn

〈p, x1 − X (t1, t0)x0〉 ‖ ‖p‖[t0,t1]

}
.

The value function is convex and its conjugate equals

V ∗(t0, p) = ϕ∗(XT (t0, t1)p) + I

(

XT (t0, t1)p | B‖·‖[t0,t1]

)

where ‖p‖[t0,t1]
=

∥

∥BT (·)XT (t1, ·)p
∥

∥

C [t0,t1]
and

∂X (t, τ) = A(t)X (t, τ), X (τ, τ) = I .

See (Daryin, Kurzhanski, and Seleznev, 2005).



The Approximate DP Problem

We now approximate the nonstandard DP problem for impulse
controls by a relatively standard problem with double constraints.

What for?

The fact is that ”ideal” impulse controls, as taken in the
mathematical sense, are not physically realizable whereas the
approximations of impulses through ”ordinary-type functions” are
realizable.



The Approximate DP Problem
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The Approximate DP Problem

Minimize integral

Jµ(u(·)) =

∫ t1

t0

‖u(t)‖dt + φ(x(t1)) → inf

over all u(·) ∈ L1([t0, t1]; R
m) due to equation

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0

under blue additional constraint

‖u(t)‖ ≤ µ, t ∈ [t0, t1]



The Value Function for the Approximate Problem

Vµ(t0, x0) = min{Jµ(u(·))|x(t0) = x0}

Vµ(t0, x0) = Vµ(t0, x0; t1, φ(·))

Function Vµ is a classical solution of the next HJB equation (in
the general case it is a generalized viscosity solution)

∂Vµ

∂t
+ min

‖u‖≤µ

{〈

∂Vµ

x
,A(t)x(t) + B(t)u

〉

− ‖u‖

}

= 0

Vµ(t1, x) = φ(x)



Internal Ellipsoidal Approximation

Ellipsoidal approximation is derived through comparison principle:

X
−

ν [t] = E (0, (ν − k(t))Z (t))

{

Ż = AZ + ZAT − η(t)BBT

k̇ = −1
4η(t)

{

Z (t1) = 0

k(t1) = 0

Here η(t) ≥ 0 is a parameter function

Xν [t] = cl

⋃

ν(·)

X
−

ν [t]



Internal Ellipsoidal Approximation
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The Double Constraints Problem

Problem

Find backward reach set (solvability domain)

W [t0] = W (t0, t1,M , k0)

for linear system

ẋ(t) = A(t)x(t) + B(t)u(t)

under soft bound
∫ t1

t0

‖u(t)‖2
Ndt ≤ k(t0) = k0 > 0

and hard bound
u(t) ∈ µE (0,Q)

given target set M = E (m,M).



Double Constraints — An Illustration
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The Value Function

The Value Function

The value function is defined as

V (t, x , k) = min
u(·)

{d2(x [t1],M ) + ((k[t1])−)2 | x [t] = x , k[t] = k}.

Here

k(t) = k0 −

∫ t

t0

‖u‖2
Ndt,

k̇(t) = −‖u‖2
N .

(k)− = min{0, k}.



The Dynamic Programming Equation

The Hamilton–Jacobi–Bellman equation

Vt + min
u

{

〈Vx ,A(t)x + B(t)u〉 − Vkχ[t]‖u‖2
N

∣

∣

∣

(1 − χ[t])u ∈ µE (0,Q)
}

= 0

under boundary condition V (t1, x , k) = d(x2,M ) + ((k)−)2.

Here

χ[t] = χ(t, x , k) =

{

0, hard bound active,
1, hard bound inactive.



The Hamiltonian

The Hamiltonian

H(t, x , k, ξ,κ) = (1 − χ[t])H0(t, x , ξ) + χ[t]H1(t, x , k, ξ,κ).

For χ[t] = 0

H0(t, x , ξ) = 〈ξ,A(t)x〉 −
〈

ξ,BQBTξ
〉

1
2
,

For χ[t] = 1

H1(t, x , k, ξ,κ) = min
u
{〈ξ,A(t)x + B(t)u〉 − κ‖u‖2

N}.



External Approximation

We approximate the value function from below by

w(t, x , k) =
〈

x − x∗(t),K −1
+ (t)(x − x∗(t))

〉

+ χ(t)k − 1.

External Approximation

W [t] ⊆ E (x∗,K+(t))

˙K+ = A(t)K+ + K+AT (t) + π(t)K+ − π−1(t)B(t)Q(T )BT (t)

ẋ∗(t) = A(t)x∗(t)

x∗(t1) = m, K+(t) = M.



Internal Approximation

Here we approximate V (t, x , k) by quadratic form from above.

Internal Approximation

W [t] = E (x∗(t),K−(t))

˙K− = A(t)K−+K−AT (t)+r−1(t)(K−S(t)B(T )+B(t)ST (t)K−)

B(t) = (B(t)Q(T )BT (t))
1
2 .

ẋ∗(t) = A(t)x∗(t).

r(t) > 0 is a tuning parameter.
S(t) is an orthogonal matrix function. (for case χ[t] = 0.)



Examples — Oscillating Systems
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The Oscillating System Equations























m1ẅ1 = k2(w2 − w1) − k1w1

mi ẅi = ki+1(wi+1 − wi ) − ki (wi − wi−1)

mνẅν = kν+1(wν+1 − wν) − kν(wν − wν−1) + u(t)

mNẅN = −kN(wN − wN−1)

wi = wi (t) — displacements from the equilibrium

mi — masses of the loads

ki — stiffness coefficients

u(t) = dU
dt

— impulse control (U ∈ BV )

Dimension is 2N (40 for 20 springs).



N → ∞ : the string equation

ρ(ξ)wtt(t, ξ) = [Y (ξ)wξ(t, ξ)]ξ , t > t0, 0 < ξ < L

w(t, 0) = 0, wξ(t,L) = u(t)/Y (L), t ≥ t0

w(t0, ξ) = w0(ξ), wt(t0, ξ) = ẇ0(ξ), 0 ≤ ξ ≤ L

w(t, ξ) — displacement from the equilibrium

u(t) = dU
dt

— impulse control

ρ(ξ) — mass density

Y (ξ) — Young modulus



The Oscillating System

Normalized matrix form:

dx(t) = Ax(t)dt + BdU(t)

x(t) =

(

w(t)
ẇ(t)

)

w(t) =







w1(t)
...

wN(t)







This system is completely controllable.
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