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Abstract— The estimation of reachability sets for systems
of high dimensions is a challenging issue due to its high
computational complexity. For linear systems, an efficient
way of calculating such estimates is to find their set-valued
approximations provided by ellipsoidal calculus. The present
paper deals with various aspects of such approach as applied
to systems of high dimensions with unknown but bounded input
disturbances. We present an innovative technique based on
parallel computation that involves on-line mixing of ellipsoidal
tubes found in parallel. This improves robustness of the
ellipsoidal estimates. Finally discussed is an implementation of
the algorithm intended for supercomputer clusters.

I. INTRODUCTION

Among estimation problems for controlled systems one

of the key issues is to find the forward and backward

reachability sets. This is especially important for systems

with uncertainty where the topic is less developed and for

systems of large dimensions for which there are very few

results.

The notations used in this paper are as follows: Br(a) is

a ball of radius r centered at a in the corresponding normed

space; ⟨x, y⟩ stands for the dot product of vectors x and

y; ∥x∥ =
√
⟨x,x⟩ is the Euclidean norm of vector x; x ∥ y

(x ⇈ y) means that vectors x and y are collinear (respectively,

directionally collinear); number ρ (ℓ ∣X ) = supx∈X ⟨ℓ, x⟩
is the value of the support function for set X in direc-

tion ℓ; number h+(X ,Y ) = inf {ε ≥ 0 ∣X ⊆ Y +Bε(0)}
(or, equivalently, sup{ρ (ℓ ∣X ) − ρ (ℓ ∣ Y ) ∣ ∥ℓ∥ ≤ 1}) de-

fines the Hausdorff semidistance between closed sets X and

Y ; convX stands for the convex hull of set X .

The system considered is

ẋ(t) = A(t)x(t) +B(t)u +C(t)v(t), t ∈ [t0, t1], (1)

with x(t) ∈ R
n being the phase trajectory that starts at

given time t0 as some x0 = x(t0) ∈ X
0. Here u is the

control and v = v(t) is the disturbance. The unknown but

bounded uncertain items x0, u, v are confined to given

convex compact sets X
0 ⊆ Rn, P(t) ⊆ Rnu , Q(t) ⊆ Rnv

accordingly. The control u may be treated in the class of

either open-loop functions u(t) or closed-loop (feedback )
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strategies u = U (t, x) that ensure existence of solution to

(1). By G(t, τ) we denote the fundamental matrix (Green’s

function) of the system (1) (solution to Cauchy’s problem

∂G/∂t = A(t)G(t, τ), G(τ, τ) = I).

The reachability set X [τ] of system (1) at time τ from

position {t0,X 0} is the set of all states xτ reachable by

some closed-loop control u = U (t, x) from some point

x0 ∈X
0, despite the unknown disturbance v(⋅). Set-valued

function X [t], t ≥ t0 is the reachability tube.

The basic problem treated here is how to calculate

ellipsoidal estimates for the reachability tube of system (1)

under indicated set-membership uncertainties, [1], [2].

Note that solutions to the stated problem are crucial tools

for dealing with the problem of target feedback control

which is to find a feedback control strategy U (t, x) that

steers system (1) from given position {t0,X 0} to given

target set M , so that x(t1) ∈ M despite any admissible

disturbance v(⋅). For (1) this may be solved in terms of

the backward reachability (solvability) tube W [t] for (1)

which are defined similarly to X [t], but in backward time.

Exact calculation of W [t] for systems of higher dimensions

is computationally too cumbersome, hence we use W
−[t] –

its internal ellipsoidal approximations [1], [2]

With W [t] given, the control strategy is

U
∗(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

P (t)BT (t)p

⟨BT (t)p,P (t)BT (t)p⟩
1

2

, BT (t)p ≠ 0;
P(t), BT (t)p = 0;

where the vector p = p(t, x) = ∂V /∂x, V (t, x) =
d(G(t1, t)x,G(t1, t)W [t]), is the direction of the shortest

path from x to W [t] (see [1]).

Recall that an ellipsoid E (x,X) ⊆ Rk with center x ∈ Rk

and non-negative definite configuration matrix X ∈ Rk×k is a

convex compact set with support function ρ(ℓ ∣ E (x,X)) =⟨ℓ, x⟩ + ⟨ℓ,Xℓ⟩ 12 , see [3], [4].

Here we require that all sets in the problem are ellip-

soids: X
0 = E (x0,X0), P(t) = E (p(t), P (t)), Q(t) =

E (q(t),Q(t)). Otherwise sets P(t) have to be approxi-

mated by their internal ellipsoids and set Q(t) by their

externals [2]. Functions p(t), P (t), q(t), Q(t) for the

constraints are assumed to be continuous.

An earlier result [2] is that the internal X
−[t] =

E (x∗(t),X−(t)) and external X
+[t] = E (x∗(t),X+(t))

ellipsoidal estimates of the reachability tube X [t] for (1)

are solutions to the following ODEs:

ẋ∗(t) = A(t)x∗(t) +B(t)p(t) +C(t)q(t), (2)

with initial condition x∗(t0) = x0, and
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Ẋ+(t) +A(t)X+(t) +X+(t)AT (t)
+ π+(t)X+(t) + π−1+ (t)B(t)P (t)B(t)

−RS [(X+(t)) 1

2S+(t)(C(t)Q(t)CT (t)) 1

2 ] = 0, (3)

Ẋ−(t) +A(t)X−(t) +X−(t)AT (t)
−RS [(X−(t)) 1

2S−(t)(B(t)P (t)BT (t)) 1

2 ]
+ π−(t)X−(t) + π−1− (t)C(t)Q(t)C(t) = 0, (4)

with initial condition X±(t0) =X0 and RS[Q] = Q +QT .

In (3), the parameterizing function

π+(t) = ⟨s(t),B(t)P (t)BT (t)s(t)⟩ 12 / ⟨s(t),X+(t)s(t)⟩ 12 ,
where s(t) is the solution to the adjoint system

ṡ(t) = −AT (t)s(t), s(t0) = ℓ.
S+(t) is an orthogonal matrix that ensures vectors

S+(t)(C(t)Q(t)CT (t)) 1

2 s(t) and (X+(t)) 1

2 s(t) to be

collinear. (With no disturbance v take S+ ≡ 0).

In (4), S−(t) is an orthogonal matrix such that vec-

tors S−(t)(B(t)P (t)BT (t)) 1

2 s(t) and (X−(t)) 1

2 s(t) are

collinear. In the absence of disturbance the two terms in (4)

with π(t) are omitted. Otherwise

π−(t) = ⟨s(t),C(t)Q(t)CT (t)s(t)⟩ 12 / ⟨s(t),X−(t)s(t)⟩ 12 .
Ellipsoidal approximations (4), (3) are “tight” in the sense

that they touch the exact reachability set in the direction of

the adjoint vector s(t):
ρ (s(t) ∣X +[t]) = ρ (s(t) ∣X −[t]) = ρ (s(t) ∣X [t]) .
The calculation of external estimates is less difficult than

of the internals which are less tackled due to arising serious

difficulties. However, the internals are crucial for many appli-

cations and these difficulties, which increase with dimension,

have to be overcome. We therefore concentrate on internals.

An attempt to apply established approximation formulas

from [2] to oscillating systems of high dimensions [5] with

scalar control (nu = 1) revealed that the matrix of ellipsoid

X−[t] is ill-conditioned (namely, n − 1 semi-axes of the

ellipsoid are of length close to zero). This presents a serious

issue for practical computations since

1) errors caused by numerical integration of approxima-

tion’s ODE may cause matrix X−[t] to have negative

eigenvalues, which is unacceptable;

2) disturbances acting in directions where X−[t] is de-

generate lead to X−[t] collapsing quickly;

3) the only information provided by a degenerate ellipsoid

with a single positive axis is the value of support

function in the direction of that axis. However, this

value may be obtained by simpler calculations (not

involving the solution of a matrix ODE).

In section II we present an amendment for ellipsoidal

approximation formulas from [2]. The idea is to calculate

a set of ellipsoidal approximations which are then “mixed”.

Another issue with high-dimension systems is its polyno-

mially increasing computational load. Section III introduces

a new efficient method for calculating matrices S±(t).
Finally, in section IV we discuss a parallelized software

implementation of the presented formulas. The given algo-

rithms have proved to be effective for systems of ODE’s of

dimension up to 500.

II. REGULARIZING THE ESTIMATES

Our numerical experiments with internal ellipsoidal esti-

mates of the reachability tube for a high-order oscillating

system [5] with a scalar control lead to the following

conclusion. If the initial set X
0 has small diameter, then the

internal ellipsoidal estimates of the reach tube are close to

degenerate. Namely, as time t increases, only one eigenvalue

of matrix X−(t) grows. Other eigenvalues remain close to

those of matrix X0.

We start this section by demonstrating the cause of such

degeneracy. To do this, we analyse the formula for the

internal ellipsoidal estimate of the geometrical sum of two

ellipsoids. After that we indicate how one can overcome this

degeneracy by weakening the requirements on the tightness

of estimates. Finally we extend this approach to calculating

the internal estimates of the reachability tube.

A. Degeneracy of Sum of Degenerate Ellipsoids

Recall [2] the formula for an internal ellipsoidal estimate

of the geometrical sum of m ellipsoids E (qi,Qi), i = 1,m,

tight in direction ℓ ∈ Rn:

E (q1,Q1) +⋯+ E (qm,Qm) ⊇ E (q,Q), (5)

q =
m∑
i=1

qi, Q = RP (Q 1

2

1
+ S2Q

1

2

2
+⋯+ SmQ

1

2

m),
where RP (Q) = QTQ, and Si are orthogonal matrices

satisfying Q
1

2

1
ℓ ⇈ SiQ

1

2

i ℓ. If any of the matrices Qi is

degenerate, relation (5) makes sense for directions ℓ such

that Qiℓ ≠ 0, i = 1,m.

Theorem 1: Suppose rankQi = ri and Qiℓ ≠ 0, i = 1,m.

Then the rank of matrix Q calculated by (5) is limited by

r1 +⋯+ rm − (m − 1).
Proof: Denote column spaces of matrices Q

1

2

1
and

SiQ
1

2

i by L1 and Li respectively, i = 2,m. Then imQ ⊆∑m
i=1Li. By definition of matrices Si the non-zero vector

e1 = Q
1

2

1
ℓ belongs to all subspaces Li. Therefore the total

number of linearly independent vectors in imQ cannot be

greater than r1 + (r2 − 1) +⋯+ (rm − 1).
Corollary 1: The set of rank 1 matrices is closed with

respect to (5).

Corollary 2: Consider system (1) with scalar control

(rankB(t)P (t)PT (t) ≡ 1) without uncertainty, with initial

set being a point or an interval (rankX0 ⩽ 1). Then the

ellipsoidal estimate (2), (4) for such system will also be a

point or an interval at each fixed time (rankX−(t) ⩽ 1).

Proof: This statement follows from the fact that all

Euler approximations to (4) will be of rank 1.
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Remark 1: The degeneracy of estimates is the result of

their tightness (the requirement that estimates touch the exact

set). This is not a property of a particular formula (5). Indeed,

if rankQi = 1, then the summed ellipsoids may be presented

as Ei = E (qi,Qi) = conv{qi ± ai}, where vectors ai are the

only non-zero semi-axes of these ellipsoids. The exact sum

E1+⋯+Em is a polyhedron conv{q1+⋯+qm±a1±⋯±am}.
Along almost all directions ℓ the only tight approximation

will be one of the diagonals of this polyhedron. Formula (5)

describes precisely those diagonals.

Remark 2: For some choices of orthogonal matrix S the

dimension of the internal ellipsoidal estimate may be strictly

less than the dimension of ellipsoids being added. For ex-

ample, if Q1 = Q2 = I , ℓ = e1, S = diag{1,−1,−1, . . . ,−1},
then (5) gives Q = diag{1,0,0, . . . ,0}.
B. Regularizing the Estimate for the Sum of Degenerate

Ellipsoids

Here we show how several degenerate estimates may be

combined (mixed) to get an estimate of higher dimension.

This approach is based on the formula for the internal

ellipsoidal estimate for the convex hull of the union of

ellipsoids [1].

Lemma 2: If ellipsoids E
−
i = E (q,Q−i ), i = 1,m, are

internal estimates of a convex set X , then ellipsoid

E
−
α = E (q,Q−α), Q−α =

m∑
i=1

αiQ
−
i , αi ⩾ 0,

m∑
i=1

αi = 1,
(6)

will also be an internal estimate of X .

Proof: Since
√
t is concave, we have

ρ (ℓ ∣ E −α ) = ⟨q, ℓ⟩ + (m∑
i=1

αi ⟨ℓ,Q−i ℓ⟩)
1

2

≤
m∑
i=1

αi(⟨qi, ℓ⟩ + ⟨ℓ,Q−i ℓ⟩ 12 ) ⩽ max
i=1,m

ρ (ℓ ∣ E −i ) , (7)

hence E
−
α ⊆ conv⋃m

i=1 E
−
i ⊆X .

Theorem 3: Suppose q = 0 and the dimension of L (the

linear hull of E
−
i ) is r. Then if αi > 0, i = 1,m, the following

equality holds: imQ−α = L . In particular, the matrix Q−α is

of rank r.

Proof: The statement of this theorem means that

im(α1Q
−
1
+⋯+ αmQ−m) = imQ−

1
+⋯+ imQ−m.

The latter, due to the symmetry of matrices Q−i , is equivalent

to

ker(α1Q
−
1
+⋯+ αmQ−m) = kerQ−1 ∩⋯∩ kerQ−m.

The inclusion of the right-hand side into the left is obvious.

If x ∈ ker(α1Q
−
1
+⋯+αmQ−m), then taking the dot product of

equality α1Q
−
1
x+⋯+αmQ−mx = 0 by x, we get α1 ⟨x,Q−1x⟩+

⋯ + αm ⟨x,Q−mx⟩ = 0. Since matrices Q−i are non-negative

definite and αi is positive, we have ⟨x,Q−i x⟩ = 0. Therefore

x ∈ kerQx
i .

Note some properties of estimates E
−
α :

1) Suppose that ellipsoidal approximation E
−
1

is tight in

direction ℓ, i.e. ρ (ℓ ∣ E −
1
) = ρ (ℓ ∣X ). Let us estimate

the difference between its support function and that of

ellipsoid E
−
α in the same direction:

ρ (ℓ ∣ E −α ) ⩾ ⟨q, ℓ⟩ + (α1 ⟨ℓ,Q1ℓ⟩) 1

2 =
⟨q, ℓ⟩ + ⟨ℓ,Q1ℓ⟩ 12 √1 − (1 − α1) =

= ρ (ℓ ∣X ) − 1

2
(1 − α1) ⟨ℓ,Q1ℓ⟩ 12 +O((1 − α1)2).

Therefore, the closer α1 is to 1, the closer are ellipsoids

E
−
α to the tight approximation in direction ℓ.

2) If all the ellipsoids E
−
i , i = 1,m, are tight approx-

imations of X in the same direction ℓ, then in (7)

an equality holds and the ellipsoid E
−
α is also a tight

approximation of X in direction ℓ.

Example 1: Figure 1 shows ellipsoidal estimates of the

sum of two degenerate ellipsoids. Original ellipsoids Ei are

two line segments (thick dotted line), and their sum is a

parallelogram (thin dotted line). Due to Theorem 1, tight

approximations of the sum are also degenerate ellipsoids

(line segments) shown by thick solid line. Regularized ap-

proximations with α1 = 1

10
, 1
2
, 9

10
are presented with thin

solid lines. They are non-degenerate (Theorem 3) and touch

the parallelogram (i.e. they are tight in direction of normals

to parallelogram sides — property 2). Besides that, for

α = 1

10
and 9

10
thanks to property 1 support functions of

estimates are close to support function of the parallelogram

in corresponding directions.

Fig. 2 shows internal ellipsoidal approximations of solv-

ability set, as calculated by (8), for an oscillating system

ẋ1 = x2, ẋ2 = −x1 +u on time interval [0, π] with parameter

γ = 1

20
(left) and 1

2
(right). Exact (tight) approximations are

degenerate ellipsoids (shown with thick lines).

Fig. 1. Internal ellipsoidal approximations of sum of two ellipsoids

C. Regularizing the Estimate of the Reachability Tube

We choose in (6) the following values of parameters α:

α1 = 1 − σγ + σγβi, αi = σγβi, i = 2,m, where βi ⩾ 0,∑m
i=1 βi = 1, γ ⩾ 0. Here σ is sufficiently small, such that

α1 > 0. Then

σ−1(Q−α −Q−1) = γ (m∑
i=1

βiQ
−
i −Q

−
1
) .
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We use this result to mix m ellipsoidal estimate of the

reachability tube:

Ẋ−i (t) +A(t)X−i (t) +X−i (t)AT (t) −
−RS((X−i (t)) 1

2Si(t)(B(t)P (t)BT (t)) 1

2 ) +
πi(t)X−i (t) + π−1i (t)C(t)Q(t)C(t) +
γ
⎛
⎝

m∑
j=1

βijXj(t) −X−i (t)⎞⎠ , X−i (t0) =X0; (8)

Here βij ⩾ 0, ∑m
j=1 βij = 1, i = 1,m; γ ⩾ 0; Si(t)

are arbitrary orthogonal matrices such that vectors

Si(t)(B(t)P (t)BT (t)) 1

2 si(t) and (X−i (t)) 1

2 si(t)
are directionally collinear; functions si(t) are the

solutions to adjoint system with different initial

conditions: ṡi(t) = −AT (t)si(t), si(t0) = ℓi,

and in the presence of disturbances πi(t) =
⟨si(t),C(t)Q(t)CT (t)si(t)⟩ 12 / ⟨si(t),X−i (t)si(t)⟩ 12 .

Remark 3: Parameter γ ⩾ 0 controls how fast the ap-

proximations are “mixed” – the higher it is, the greater

is the impact of mixing. Parameters βij ⩾ 0 control the

configuration of mixing (which ellipsoids are added to the

given one).

Remark 4: The choice of identical coefficients βij = β̂j

(in particular, βij = 1

m
) reduces the number of operations,

since in this case the sum ∑m
j=1 βijX

−
j (t) = ∑m

j=1 β̂jX
−
j (t)

does not depend on j and is calculated only once for each

time step.

Theorem 4: Suppose that solutions X−i (t) to equation (8)

are extendible to interval [t0, t1], and are positive definite

matrices on this interval. Then the set-value function

X
−[t] = conv m⋃

i=1

X
−
i [t] = conv m⋃

i=1

E (x∗(t),X−i (t))
satisfies for t ∈ [t0, t1] the funnel equation

lim
σ→0+

σ−1h+((I − σA(t))X −[t + σ] − σC(t)Q(t),
X
−[t] + σB(t)P(t)) = 0

with initial condition X
−[t0] ⊆X

0.

Proof: Without loss of generality we consider p(t) ≡ 0,

q(t) ≡ 0 and therefore, x∗(t) ≡ 0. Then, using the change of

variables z(t) = G(t0, t)x(t), we come to system (1) with

A(t) ≡ 0. Besides that, for shorter notation we re-denote

matrices B(t)P (t)BT (t) and C(t)Q(t)CT (t) as P (t) and

Q(t) respectively.

The support function of the reachability set X
−[t] is

ρ (ℓ ∣X −[t]) = max{⟨ℓ,X−i (t)ℓ⟩ 12 ∣ i = 1, . . . ,m}. Let σ >
0 be sufficiently small, such that for δ ∈ [0, σ] the maximum

for given direction ℓ is achieved on the same i = i0, i.e.

ρ (ℓ ∣X −[τ]) = ⟨ℓ,X−i0(τ)ℓ⟩ 12 .

Assuming ∥ℓ∥ = 1, the estimate for the support function

of X
−[t − σ] is

ρ (ℓ ∣X −[t − σ]) = ⟨ℓ,X−i0(t − σ)ℓ⟩ 12 =
⟨ℓ, (X−i0(t) − σẊ−i0(t) + o(σ))ℓ⟩ 12 =

= ⟨ℓ,X−i0(t)ℓ⟩ 12 − σ

2
⟨ℓ,X−i0(t)ℓ⟩− 1

2 ⟨ℓ,X−i0(t)ℓ⟩ + o(σ).
Omitting the dependence on t, we further estimate

⟨ℓ,X−i0ℓ⟩ = −⟨ℓ, (X−i0) 1

2SP
1

2 ℓ⟩ − ⟨ℓ, P 1

2S(X−i0) 1

2 ℓ⟩ +
πi0 ⟨ℓ,X−i0ℓ⟩ + π−1i0 ⟨ℓ,Qℓ⟩ +

+ γ
⎛
⎝

m∑
j=1

βi0j ⟨ℓ,X−j ℓ⟩ − ⟨ℓ,X−i0ℓ⟩⎞⎠ ⩾
− 2∥(X−i0) 1

2 ℓ∥ ∥S∥ ∥P 1

2 ℓ∥ + 2 ⟨ℓ,X−i0ℓ⟩ 12 ⟨ℓ,Qℓ⟩ 12 =
= 2 ⟨ℓ,X−i0ℓ⟩ 12 (ρ (ℓ ∣Q) − ρ (ℓ ∣P)) .

Here we have used the Cauchy–Bunyakovsky–Schwarz in-

equality as well as relations ∥Sx∥ ≤ ∥S∥ ∥x∥, 2ab ≤ a2 + b2.

The multiplier of γ is non-positive, since for i = i0 the

expression ⟨ℓ,X−i ℓ⟩ is at its maximum. Returning to the

estimate of ρ (ℓ ∣X −[t − σ]), we get relation

(ρ (ℓ ∣X −[t + σ]) + σρ (ℓ ∣Q(t))) −
(ρ (ℓ ∣X −[t]) − σρ (ℓ ∣P(t))) = o(σ),

which is equivalent to the funnel equation of the above.

Corollary 3: Set-valued function X
−[t] is an internal

estimate of the reachability tube X [t], and functions X
−
i [t]

are internal ellipsoidal estimates of X [t].
Proof: This follows from the fact that the reachability

set is the maximum solution of the funnel equation with

respect to inclusion.

Example 2: Figure 2 shows internal ellipsoidal estimates

of the reachability set of an oscillating system ẋ1 = x2, ẋ2 =
−x1+u on time interval [0, π] with γ = 1

20
and 1

2
. Here exact

approximations are degenerate ellipsoids (shown with thick

lines).

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2. Internal ellipsoidal estimates of the reachability set of a 2D system
(left: γ = 1

20
, right: γ = 1

2
)

Example 3: Figure 3 depicts dependence of the size of

ellipsoidal estimates for a higher-order oscillating system

(number of nodes N = 10, dimension n = 2N = 20). On

the left, 20 graphs of eigenvalues of the matrix (X−
1
) 1

2 are

shown (these eigenvalues are semi-axes of the estimates). On

the right the volume of the estimates is plotted in the power

of 1

n
= 1

20
(i.e. geometrical mean of the axes).

Analysing similar plots for a number of values of N ,

we came to conclusion that for robust computation of the

reachability tube the number of approximations m should

be chosen close to the dimension of the system n.
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Fig. 3. The size of ellipsoidal estimates depending on the number of mixed
estimates m (top: eigenvalues, bottom: volume in the power 1

n
)

III. CALCULATING ORTHOGONAL MATRIX S

EFFICIENTLY

Equation (4) for the ellipsoidal approximation includes the

operation of finding an orthogonal matrix S = S(v1, v2) ∈
R

n×n, such that Sv2 ⇈ v1 for some non-zero vectors v1, v2 ∈
R

n.

Note that with n ⩾ 2 the matrix S(v1, v2) is not unique

(for n = 2 there are at least two such matrices, and for n ⩾ 3
there are infinitely many).

Function S(v1, v2) should be defined as sufficiently

smooth in arguments v1, v2, so that higher-order ODE

integration schemes could be applied to (4).

Matrix S(v1, v2) may be calculated, for example, by

computing the singular value decomposition of vectors v1,

v2 and by multiplying the corresponding orthogonal matrices

[6]. The number of operations for this procedure is of order

O(n3), and continuous dependence of S on v1, v2 is not

guaranteed.

The following theorem gives explicit formulas for calcu-

lating S(v1, v2), using O(n2) operations, and sufficiently

smooth in its arguments.

Theorem 5: Let v1, v2 ∈ R
n be some non-zero vectors.

Then matrix S ∈ Rn×n calculated as

S = I +Q1(S − I)QT
1
, (9)

S = ( c s

−s c
) , c = ⟨v̂1, v̂2⟩ , s =√1 − c2, v̂i = vi∥vi∥ , (10)

Q1 = [q1 q2] ∈ Rn×2, (11)

q1 = v̂1, q2 =
⎧⎪⎪⎨⎪⎪⎩
s−1(v̂2 − cv̂1), s ≠ 0,
0, s = 0,

is orthogonal and satisfies the property Sv2 ⇈ v1.

Proof: Suppose v1 /∥ v2 and pass to normalized vectors

v̂i = vi/ ∥vi∥. We shall describe an orthogonal transformation

S which is a rotation in plane π defined by vectors v1 and v2
that transforms vector v̂2 into v̂1. We impose an additional

requirement that on orthogonal complement to π the induced

operator S∣π⊥ should be equal to identity.

Compose a matrix V = [v̂1 v̂2] and find its QR decom-

position: V = QR, where Q ∈ Rn×n is an orthogonal matrix,

and R ∈ Rn×2 is an upper triangular matrix. Matrices Q and

R may be written in block form as

Q = [Q1 Q2] , Q1 ∈ Rn×2, Q2 ∈ Rn×(n−2),

R = [ R1

O(n−2)×2
] , R1 = (1 c

0 s
) .

Note that columns of Q1 and Q2 form an orthonormal

basis on the plane π and its orthogonal complement π⊥

respectively. With an additional constraint R11 > 0, R22 >
0 the matrix Q1 is unique, and the matrix Q2 may be

arbitrary with orthonormal columns orthogonal to those of

Q1. Relations (11) may be regarded as the Gram–Schmidt

orthogonalization process for finding Q1.

Set

S = Q [S O

O I
]QT .

This matrix is orthogonal as the product of orthogonal ma-

trices. It describes the composition of three transformations:

a rotation of plane π to plane L (e1, e2), a rotation in that

plane, and a return to original coordinates.

We now prove that S does not depend on Q2. Indeed,

S = Q1SQ
T
1
+ Q2Q

T
2

. But from equality QQT = Q1Q
T
1
+

Q2Q
T
2
= I it follows that Q2Q

T
2
= I −Q1Q

T
1

, so we get (9),

which does not contain Q2.

Matrix S is also orthogonal when v1 ∥ v2, i.e. s = 0. In

this case c = ±1. For c = 1 we have S = I , hence S = I . For

c = −1 we get S = I − 2v̂1v̂T1 , and check that SST = I .

Now calculate Sv̂2. From (11) we get QT
1
v̂2 = (cs) for

any value of s. We further have

Sv̂2 = v̂2 +Q1 (c − 1 s

−s c − 1
)(c

s
) =

v̂2 + [v̂1 s−1(v̂2 − cv̂1)](1 − c
−s
) = v̂1.

For any vector v ⊥ v̂1, v̂2 we have QT
1
v = 0, hence Sv = v.

Remark 5: The number of operations in (9)–(11) is of

order O(n2). Moreover, multiplication by matrix S may be

performed with O(n2) operations instead of usual O(n3).
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Remark 6: It is straightforward to check that mapping S =
S(v1, v2) has continuous derivatives of any order everywhere

except the cone v1 � v2.

IV. PARALLEL COMPUTATIONS

Here we discuss issues of parallel computations for find-

ing ellipsoidal estimates and solving the feedback control

problem.

A. Calculating the Ellipsoidal Estimates

In order to solve the ODE (8) numerically, on µ parallel

processes, we decompose the index set I = {1, . . . ,m} into

µ disjoint subsets Ik, such that I = I1∪⋅ ⋅ ⋅∪Iµ. Process k will

calculate and store matrices X−i , i ∈ Ik. (For load balancing

purposes the number of elements in subsets Ik should be

approximately the same, close to m/µ.)

Integrating ODE (8) “as it is” would lead to an excessive

amount of data exchange between processes in order to

compute the term ∑m
i=1 βijX

−
j . To avoid this, we combine (8)

with (6). Each process solves its own ODE (8) with the men-

tioned term replaces with ∑i∈Ik βijX
−
j , where ∑j∈Ik βij = 1.

Estimates belonging to different processes are mixed in

discrete time points using (6) with αi = 1

m
.

In other words, ellipsoidal approximations are mixed by

(8) in each process separately, and all approximations are

mixed by (6) at discrete time instants.

B. Calculating the Feedback Control

For the feedback control problem the exact “extremal

aiming” control should be calculated as

U
∗(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

P (t)BT (t)p

⟨BT (t)p,P (t)BT (t)p⟩
1

2

, BT (t)p ≠ 0;
P(t), BT (t)p = 0;

where the vector p = p(t, x) = ∂V −/∂x, V −(t, x) =
d(G(t1, t)x,G(t1, t)W −[t]) is the direction of the shortest

path from x to W
−[t]. The set W

−[t] is the convex hull of

a union of sets, therefore the calculation of vector p reduces

to a computationally difficult max-min problem

V −(t, x) = max
∥p∥≤1

min
i=1,...,m

{⟨p,G(t1, t)x⟩−
ρ (GT (t1, t)p ∣ W −

i [t])} (12)

(since parameters of the sets are scattered across multiple

processes).

To overcome this difficulty, we replace V −(t, x) with

V̂ −(t, x) = d(G(t1, t)x,G(t1, t)Ŵ −[t]),
Ŵ
−[t] = m⋃

i=1

W
−
i [t] = m⋃

i=1

E (w(t),Wi(t)),
which is equivalent to interchanging the maximum and

minimum in (12)

V̂ −(t, x) = min
i=1,...,m

max
∥p∥≤1
{⟨p,G(t1, t)x⟩−
ρ (GT (t1, t)p ∣ W −

i [t])}. (13)

This leads to a vector p̂(t, x) = ∂V −/∂x equal to p̂ = p̂i0 ,

where i0 ∈ 1,m is the minimizer index in (13), and p̂i is the

maximizer in (13) for that fixed i = i0.

This way, each process locally finds an ellipsoid nearest

to the current state. Afterwards the process that holds the

nearest possible ellipsoid calculates the value of control by

using that ellipsoid, and communicates the control to all the

other processes.

C. Results of Modeling

Our software implementation is written in Fortran 2003

using MPI (Message Passing Interface) for parallelization,

MKL (Intel Math Kernel Library) for matrix operations,

and NAG library for solving ODEs and other types of

calculations.

In a series of numerical experiments, we were able to solve

feedback control problems for an oscillating system [5] with

the following parameters (N is the number of oscillators,

dimension of the system is n = 2N ):

● N = 25 (n = 50) for a system with disturbance, without

matching condition;

● N = 50 (n = 100) for a system with unilateral scalar

control (u ∈ [0, µ]);
● N = 50 (n = 100) for a non-homogeneous oscillating

system;

● N = 100 (n = 200) for a system with bilateral scalar

control;

● N = 250 (n = 500) for a system with vector control of

dimension N .

We do not compare these results to a non-parallel version

of our code, since existing memory limitations prevent it

from being run with large values of n.

In our previous experiments without mixing of ellipsoidal

estimates [5] we were able to achieve n = 25 for a system

with matching condition. There we were unable to further

increase n due to the degeneracy of estimates (which was

now addressed by the methods of this paper).

V. CONCLUSION

This paper presents an innovative scheme for calculating

the reachability set under uncertainty with applications to the

problem of feedback control. Examples of its efficiency are

demonstrated on systems of dimension up to 500.
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