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Abstract— This paper deals with output feedback impulse
control under set-membership uncertainty where the control
realization consists of a sequence ofδ-impulses. It indicates
solution schemes based on generalized Dynamic Programming
relations of the HJB type and suggests recommendation for
computation. The problem is then generalized to the case of
high-order “fast” controls which solve the terminal control
problem in arbitrary small time. Finally an output feedback
control problem is solved where communication signals for the
available noisy measurements arrive at Poisson instants of time.
Numerical examples are demonstrated.

I. I NTRODUCTION

The problem of output feedback control through available
measurements under uncertain disturbances (noise) is one
of the central issues of control theory. It was thoroughly
developed within a stochastic model with statistical informa-
tion on the noise [1], [2]. However a large array of pending
problems are to be solved with no such information, but
only under a set-membership description of the uncertain
items [3]–[7]. This paper deals with one of such problems
whose specifics are also in the fact thatthe output feedback
is to be generated by impulse controls. The theory of closed-
loop impulse control, initiated in [8], was developed in
papers [9], [10] where considered were not only impulsive
inputs ofδ-type but also impulses of higher order, described
by higher derivatives ofδ-functions. Such inputs describe
virtual controls which can solve the terminal control problem
in finite time equal to zero. Their physically realizable
approximations allow to solve such problems in arbitrary
small “nano-time”.

Alternatively considered are problems of closed-loop im-
pulse control with measurement signals arriving only at
random instants of time while satisfying a Poisson distribu-
tion and being corrupted by bounded stochastic noise. Here
stochasticity is intertwined with a set-membership approach.

II. T HE PROBLEM OF OUTPUT FEEDBACK IMPULSE

CONTROL

A. The Initial Formulation

In this section we start by an impulse control problem
modeled by one of minimizing a generalized Meier–Bolza-
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type functional:
{

J(u(·)) = Var
[t0,t1]

U(·) + ϕ(x(t1 + 0)) → inf,

dx(t) = A(t)x(t)dt+B(t)dU(t), t ∈ [t0, t1].
(1)

Herex(t) ∈ R
n is the state vector,U(·) ∈ BV ([t0, t1]; R

m)
is the generalized control,BV ([t0, t1]; R

m) is the space of
m-vector functions of bounded variation (here we assume
that all functions of bounded variation are left-continuous).
Matrix functionsA(t) ∈ R

n×n, B(t) ∈ R
n×m are assumed

continuous. The terminal timet1 is fixed. The terminal
functionϕ : R

n → R ∪ {∞} is closed and convex.
The information available to control is given by the

following measurement equation:

y(t) = H(t)x(t) + ξ(t). (2)

Hereξ(t) ∈ Q(t) is the bounded noise,Q(t) ∈ conv R
n.

For this system we are to solve a particular case of the
measurement feedback control problem [4]. The particular
properties of this simplified version allow to present a fairly
simpler solution scheme than in the more general case. Here
is a preliminary loose version of the problem.

Problem 1: For a given terminal functionϕ(·), find a mea-
surement impulse feedback control minimizing the functional
J(U(·)), despite the disturbanceξ(·), i.e. minimizing

J (U(·)) = max{J(U(·)) | x(·)},

where the maximum is taken over all trajectories consistent
with available measurements (2).

B. The Controlled System

In our initial formulation, the measurementy(t) is a
discontinuous function even if the noise is smooth, due to
impulses in control. Here we perform a decomposition of
the initial system into two parts, the one with uncertainty
and the other with impulses.

Let X(t, τ) be the transition matrix of the homogeneous
system, a solution to the matrix equation∂X(t, τ)/∂t =
A(t)X(t, τ), X(τ, τ) = I.

We represent the variablex(t) as a sum

x(t) = X(t, t1)x1(t) +X(t, t1)x2(t), (3)

wherex1(t) andx2(t) satisfy the system
{

ẋ1(t)= 0,
dx2(t)= B(t)dU(t), x2(t0) = 0,

(4)



and the measurement equation becomes

y1(t) = H(t)X(t, t1)x1(t) + ξ(t) =

= y(t) −H(t)X(t, t1)x2(t).

We see that the equation forx2(t) does not contain any
uncertain items, hencex2(t) is known to the controller.
The measurementy1(t) is also expressed through available
information — the actual measurementy(t) and the known
variablex2(t).

C. The Information State and the Information Set

Now we need to definethe stateof the system with
feedback noise. According to [4] here we distinguish two
problems — the one ofguaranteed state estimationwhich
gives us this state and the problem offeedback control in the
space of states.

Suppose the measurement process begins att0 < t1. Then
the on-line information stateor position of the system is
defined as the triplet{t,X1[t], x2(t)} where X1[t] is the
information setof all possible statesx1(t) consistent with the
system model, the available measurementy1(s), s ∈ [t0, t],
t ≤ t1, and the constraintQ on the unknown but bounded
noiseξ(·).

SetX1[t] is the solution to the problem of guaranteed state
estimation [5], [6]. Here

X1[t] =
⋂

{H−1(t) (y∗1(τ) − Q(τ)) | τ ∈ [t0, t]},

where realizations of measurementsy∗1(t) on time interval
t ∈ [t0, t] are given.

The information set may be also described through its
support function or funnel equation.

The support function1 of the setX1[t] may be calculated
through techniques of convex analysis (see [4], [6], [11]).
Note that the measurement equation produces att = t0 the
inclusion x1(t0) ∈ H−1(t0)(y

∗
1(t0) − Q(t0)) = X 0

1 . We
have

ρ(ℓ | X1[t]) = inf
λ(·)

{
∫ t

t0

(

〈λ(τ), y∗1(τ)〉+

+ ρ(−λ(τ) | Q(τ))
)

dτ | ψ(t) = ℓ

}

,

where the vector rowψ satisfies the differential equation

ψ̇ = λ(t)H(t), ψ(t0) = 0.

If the disturbance and hence the measurements are smooth
enough, thenX1[t] is the solution to thefunnel equation2

[12]:

lim
σ→0+0

σ−1h
(

X1[t+ σ],

X1[t] ∩H
−1(t)(y∗1(t) − Q(t))

)

= 0. (5)

1The support function of a convex setA is

ρ (ℓ | A) = max{〈ℓ, x〉 | x ∈ A}.
2Here h(A, B) is the Hausdorff distance between two compacts:

h(A, B) = max{h+(A, B), h−(A, B)}, h+(A, B) = min{ε | A ⊆
b + εB1}, h−(A, B) = h+(B, A).

The information state thus consists of the information set
X1[t] which does not depend on the control and the vector
x2(t) which has to be controlled in such a way that the sum
x2(t) + X1[t] would be steered towards the terminal setM
with uncontrollable componentX1[t] being estimated on-
line.

D. The Precise Formulation of the Problem

Thus we have the set-valued information state{t,X1, x2},
whereX1 is convex and compact. To proceed further with
the the measurement feedback control problemwhile trying
to mimic traditional theory under complete information we
would have to deal with control problems in themetric space
of convex compact sets, [4], [7]. But the problem treated here
allows a fairly simpler solution and may be reduced to one in
finite-dimensional space. We may now give a more precise
formulation for Problem 1.

Problem 2: Given position{t,X1, x2}, t ∈ [t0, t1], indi-
cate an impulse feedback control strategy which minimizes
the cost

J (U(·)) = Var
[t0,t1]

U(·) + ϕ (X1[t1] + x2(t1 + 0)) ,

ϕ(X ) = max{ϕ(x) | x ∈ X },

whatever be the measurementy1(t) (that is, despite the
unknown measurement noiseξ(t) ∈ Q(t)).

E. The Solution

Let V (t, x; t1, ϕ(·)) be the value function in the impulse
control problem (see [9], [13]) with given terminal functional
ϕ(x):

V (t, x; t1, ϕ(·)) = min
U(·)

{

Var
[t,t1]

U(·) + ϕ(x(t1 + 0))
∣

∣

x(t) = x, dx(τ) = B(τ)dU(τ)
}

. (6)

Introduce a linear mappingTU [τ, t] = x2(t+ 0)− x2(τ)
(for τ = t0 we simply haveT[t0, t] = x2(t+0)). We estimate
the minimum terminal costV (t,X1, x2) for Problem 2 as

V (t,X1, x2) ≤ min{J (U(·)) | U(·)} ≤

≤ min
U(·)

{

Var
[t0,t1]

U(·) + ϕ(X1 + x2 + TU [t, t1 + 0])

}

=

= V (t, 0; t1,ϕ(·)),

whereϕ(x) = max{ϕ(x+ z) | z ∈ X1 + x2}.
In particular, ifϕ(x) = I(x | M ), then3

ϕ(x) = I(x | M −̇(X1 + x2)).

Here −̇ denotes the geometric (Minkowski) difference be-
tween two convex sets:A −̇B = {x | B + x ⊆ A}.

The value functionV (t, x; t1, ϕ(·)) is the solution to
the following variational inequality of Hamilton–Jacobi–
Bellman type [9]:

min {H1(t, x, Vt, Vx), H2(t, x, Vt, Vx)} = 0, (7)

3By I(x | A) we denote the indicator function of the convex setA (zero
in A and+∞ outside ofA).



with initial condition V (t1, x) = V (t1, x; t1, ϕ(·)) and the
Hamiltonians

H1(t, x, ξt, ξx) = ξt,

H2(t, x, ξt, ξx) = min{〈ξx, B(t)u〉 + 1 | u ∈ S(0)}.

HereS(0) is the unit sphere inRn.
Due to (7), in any position(t, x) there are two possibilities

for the control. EitherH1 = 0, and the control may choose
dU(t) = 0, or H1 > 0, in which case it is necessary that
H2 = 0, and the control has a jump in direction−B′(t)Vx.
The magnitude of the jump is to be selected in such a way
that after the jump we again haveH1 = 0.

The computation of the value functionV (t, x) relies on
the following representation due to convex analysis:

V (t, x) = sup[〈p, x〉−ϕ∗(p)−I(p | B‖·‖[t,t1]
) | p ∈ R

n] =

= sup[〈p, x〉 − ϕ∗(p) | p ∈ B‖·‖[t,t1]
]. (8)

Here ϕ∗ denotes the Fenchel conjugate ofϕ, [11], and
B‖·‖[[t,t1]]

is the unit ball in the vector norm

‖p‖[t,t1]
=
∥

∥BT (·)p
∥

∥

C[t,t1]
= max

τ∈[t,t1]

∥

∥BT (τ)p
∥

∥ . (9)

It is straightforward to check that the function (8) indeed
satisfies the variational inequality (7).

In order to evaluate (8) numerically, one replaces the
maximum over[t, t1] in (9) with a maximum over a finite
number of time instants, and the condition

∥

∥BT (τ)p
∥

∥ ≤ 1
(for each of these instants) with a finite number of linear
inequalities of type

〈

ℓi, B
T (τ)p

〉

≤ 1 (with vectors ℓi,
i = 1, N , from the unit sphere) which gives a finite-
dimensional optimization problem with a finite number of
linear constraints (see [9] for details).

We summarize the above results in the following theorem.
Theorem 1:The optimal value of the functionalJ (U(·))

in Problem 2 is estimated from above by the value function
V (t, x) of the ordinary impulse control problem (6), with
terminal functionalϕ. The value functionV (t, x) is the
solution to the HJB variational inequality (7). The latter
allows calculating the feedback control strategy onceV (t, x)
is calculated.

Remark 1: It is known [14], [15] that in the absence of
uncertainty there exists an optimal control which is the sum
of at mostn individual impulses.

Since the information setX1[t] is varying, so dis the ter-
minal functionalϕ(x), and it is hardly possible to guarantee
the number of impulses in the realized control.

However, by recalculating the information set only at
selected instantsτ1, . . . , τm, one can guarantee the existence
of feedback control withm · n impulses at most.

F. Higher-Order Generalized Controls

We now extend the formulation of the previous section:
instead of allowing impulse controls of only delta-type we
will consider generalized functions (distributions) of arbi-
trary orderk which allow impulses of higher order described

by higher derivatives of delta-functions. The mathematical
theory of such functions can be found in [16], [17].

Instead of system (4) we consider
{

ẋ1(t)= 0,
ẋ2(t)= B(t)u(t), x2(t0) = 0.

(10)

Here the controlu(t) is chosen from the classD∗
k,m[α, β] of

continuous linear functionals over the linear normed space
Dk,m[α, β] which consists ofk times differentiable functions
ϕ(t) : [α, β] → R

m with support contained in[α, β], (see
[16], [17]) . The normρ in Dk,m[α, β] is defined as

ρ[ϕ] = max
t∈[α,β]

γ[γ0(ϕ(t)), γ1(ϕ
′(t)), . . . , γk(ϕ(k)(t))],

whereγj , γ are finite-dimensional norms in spacesR
m and

R
k+1 respectively. The normρ[ϕ] determines its adjoint

norm ρ∗[u] in the spaceD∗
k,m[α, β]. Hence the controlu

is a distribution of orderku ≤ k which includesδ-functions
and their higher derivatives of order up tok. Then trajectories
x2(t) of the system (10) are distributions fromD∗

k−1,n[α, β].
The admissible controlsu(t) are distributions from

D∗
k,m[α, β] for which there exists a distributionx2(t) ∈

D∗
k−1,n[α, β] which satisfies equation

ẋ2(t) = B(t)u+ f (α) − f (β)

in the sense of distributions. The support ofx2(t) is enclosed
in [t0, t1], where[t0, t1] ⊂ [α, β].

Heref (α) andf (β) are distributions concentrated at points
t0 and t1 respectively. They may be interpreted as initial
and final conditions for the “trajectory”x2(t) and may be
represented as

f (α) =

k
∑

j=0

αjδ
(j)(t− t0), f (β) =

k
∑

j=0

βjδ
(j)(t− t1).

Recall that any distributionu ∈ D∗
k,m[α, β] may be written

as (see [17])

〈u, ϕ〉 =
k
∑

j=0

∫ β

α

(−1)j d
jϕ

dtj
dUj(t), (11)

whereUj are functions of bounded variation on[α, β], taking
values inR

m and constant on[α, t0) ∪ (t1, β].
Using the representation (11) one may see that the problem

with generalized controls may be reduced to the problem 2
for the system with “ordinary” impulse controls:

{

ẋ1(t)= 0,
dx2(t)= B(t)dU(t), x2(t0) = 0,

where matrix

B(t) =
(

B(t) −B′(t) B′′(t) . . . (−1)kB(k)(t)
)

.

As indicated in [9], [10], for a completely controllable
system the vectorx may be moved from any pointx0 to any
other pointx1 in zero time by control given as the sum of not
more thann impulsesδ(i), i = 0, k. But such solutions do
not have a physical interpretation. Their physically realizable
bounded approximations are “fast” controls – piecewise



constant functions concentrated on arbitrary small intervals.
These functions may be selected such thatx0 may be moved
to x1 in arbitrary small “nano-time” (see [10] for details).

Our next step will be to indicate some computational tools.
As mentioned above, the high order impulse control problem
reduces to one with only “ordinary” impulses. Hence the next
part is explained for only the “ordinary” case. To calculate
ϕ

∗(p), we use ellipsoidal approximations of the information
set as described in the next subsection.

G. The Ellipsoidal Approximation

Here we assume that the setsQ(t) andM are ellipsoids4

[18]: Q(t) = E (q(t), Q(t)), M = E (m,M), with known
parametersq(t),m ∈ R

n andQ(t),M ∈ R
n×n.

We will further substituteX1[t] by its ellipsoidal approx-
imation Y+(t) = E (η(t), Y (t)). To find it we pass to a
discrete-time analogue of (5) and then apply the formula
for external approximation of intersection of two ellipsoids
(see [19], [20]):

Y (t+ ∆t) = αZ−1,

η(t+ ∆t) = Z−1(πW1q1 + (1 − π)W2q2),

where

Z = πW1 + (1 − π)W2,

W1 = Y −1(t), W2 = HT (t)Q−1(t)H(t),

q1 = η(t), q2 = H−1(t)(y(t) − q(t)),

α = 1 − π(1 − π)
〈

q2 − q1,W2Z
−1W1(q2 − q1)

〉

,

and parameterπ is found numerically from the equation

α(detZ)2 tr(Z−1(W1 −W2))−

− η(detZ)2
(

2 〈η(t+ ∆t),W1q1 −W2q2〉+

〈η(t+ ∆t), (W2 −W1)η(t+ ∆t)〉−

− 〈q1,W1q1〉 + 〈q2,W2q2〉
)

= 0.

We then find the internal ellipsoidal approximation of the
setM ′ = M −̇Y+(t). It is an ellipsoidM ′

− = E (m′,M ′)
with parameters

m′ = m− η(t),

M ′ =

(

1 −

(

〈ℓ,Mℓ〉

〈ℓ, Y ℓ〉

)
1
2

)

M +

(

1 −

(

〈ℓ, Y ℓ〉

〈ℓ,Mℓ〉

)
1
2

)

Y,

whereℓ is a “good” direction [18].
Finally we use an ellipsoidE (m′,M ′) as the target set to

calculate the value function of the impulse control problem
and the impulse feedback control.

4Ellipsoid E (r, R) with centerr ∈ R
n and configuration matrixR ≥ 0,

R ∈ R
n×n is a convex set with support function

ρ(p | E (r, R)) = 〈p, r〉 + 〈p, Rp〉
1
2 .

If matrix R is non-degenerate, then

E (r, R) = {x ∈ R
n |

˙

x − r, R−1(x − r)
¸

≤ 1}.

Now the conjugate to the terminal function is the support
function to setM ′

− and is given by

ϕ
∗(p) = 〈p,m′〉 + 〈p,M ′p〉

1
2 .

III. O UTPUT FEEDBACK UNDER COMMUNICATION

CONSTRAINTS

We return to system (4) on time interval[t0, ϑ], with
measurements coming in discrete time due to equation

y(τi) = Hx1(τi) + ξ(τi), i = 1, k,

with y(τi), x1(τi) ∈ R
n, t0 ≤ τ1 < τ2 < . . . < τk ≤ ϑ, and

noiseξ(τi) is for eachi uniformly distributed on the set

Q = {η ∈ R
n | |ηℓ| ≤ ν, ℓ = 1, n}.

The measurement signals are assumed to arrive at random
time instantsτi distributed according to Poisson5 [21], with
frequencyλ.

Problem COM. Find a time interval of lengthϑ− t0 and
a control strategyU = U(t,X1, x2) restricted by condition
Var
[t0,ϑ]

U(·) ≤ µ, such that the output feedback terminal control

problem
min{‖x1(ϑ) + x2(ϑ)‖ | U} ≤ γ (12)

under given type of observations would be solvable with
probabilityP 0 ≥ 1 − ε, havingγ, ε > 0 given in advance.

In order to ensure (12) we need to have the inclusion
x2(ϑ)+X1[ϑ] ⊆ γC (0), which could be ensured by having
x2(ϑ) = −x∗1, X1[ϑ] ⊆ x∗1 + C (0) for somex∗1. HereC (0)
is a unit cube inRn with center0.

Our Problem COM is thus reduced to two:
Problem I:find ϑ which ensuresX1[ϑ] ⊆ γC (0)+x∗1 for

somex∗1 with probabilityP 0, havingγ, ε given, and
Problem II: ensurex2(ϑ) = −x∗1.
With x∗1 andϑ given, the second problem may be solved

according to [9]. We therefore concentrate on Problem I.
Since the unknownx1(t) = c = const, andQ = −Q, we

have

c ∈
⋂

{H−1(y(ti) + Q) | i = 1, . . . , k} = c∗ + R(k, ϑ),

R(k, ϑ) =
⋂

{H−1(ξ∗(ti) + Q) | i = 1, . . . , k}, ϑ > tk,

whereξ∗(ti) is the realization ofξ(ti) at thei-th measure-
ment, R(k, ϑ) is the measurement error afterk measure-
ments, andc∗ is the realized value ofc.

Our aim will now be to figure out with what probability
we could have

R(k, ϑ) ⊆ γC (0). (13)

The answer to this question is possible by direct cal-
culation, using the reasoning of articles [21]. Indeed, the
n-dimensional cubeQ has 2n vertices. Then, if the noise
variable ξ(ti), i = 1, k, will happen to run around small
neighborhoodsD(vm, σ) of all the vertices6 vm, m = 1, 2n,

5The Poisson distribution is a standard tool for modeling communication
signal transmission in discrete time.

6Here we considern-dimensional cubes as neighborhoodsD(vm, σ) with
centervm and edges of length2σ.



we will have R(k, ϑ) ⊂ D(0, σ) and the volumeVR(k, ϑ)
of R(k, ϑ) will tend to zero withσ tending to zero

VR(k, ϑ) ≤ (2σ)n → 0.

In fact, the same result hold if the noise variable runs only
through neighborhoods ofn+ 1 vertices forming a simplex:
v1 = (−ν,−ν, . . . ,−ν), v2 = (ν,−ν,−ν, . . . ,−ν), v3 =
(−ν, ν,−ν, . . . ,−ν), etc.,vn+1 = (−ν,−ν, . . . ,−ν, ν).

For each of those verticesvj , j = 1, n+ 1, the probability
that afterk measurements the inclusionξ(ti) ∈ R(k, ϑ) ∩
D(vj , σ) is true at least once will beP (σ, k, vj) = 1− (1−
σnν−n)k and the probability that this would be true for all
the vertices ofQ is

P (σ, k) = (1 − (1 − σnν−n)k)n+1.

With n fixed, clearlylimk→∞ P (σ, k) = 1 for any σ > 0.
Therefore, we now have to takeσ = σ0 small enough to

ensure (13) and numberk = k0 which ensures

P (σ0, k0) ≥ 1 − δ. (14)

Then, clearly, we haveX1[ϑ] ⊆ x∗1(ϑ) + D(0, σ0) for some
x∗1(ϑ) which can be determined from formula (a discrete
version of formula given forρ(ℓ | X1[ϑ]) given in subsection
II-C)7

ρ(ℓ | X1[τk]) = inf
{

k
∑

i=1

〈

ℓ(i), y∗(τi)
〉

+ ρ(−ℓ(i) | Q)
∣

∣

∣

ℓ(i) ∈ R
n, i = 1, k,

k
∑

i=1

ℓ(i) = ℓ
}

.

But to have such a numberk0, the interval of observations
must be sufficiently large. The properties of the Poisson
distribution with frequencyλ indicate that the probability
P (k, ϑ − t0) of k measurements within interval[t0, ϑ] is
given by relation

P (k, ϑ− t0) = 1 −

k−1
∑

j=0

(λ(ϑ− t0))
j

j!
exp(−λ(ϑ− t0)).

Clearly, for anyk we have

P (k, ϑ− t0) → 1, ϑ→ ∞. (15)

Summarizing the above we observe that the interval of
observations[t0, ϑ0] which ensuresP 0 ≥ 1−ε is determined
from inequality

P 0 = P (k0, ϑ−t0)P (σ0, k0) ≥ P (k0, ϑ0−t0)(1−δ) ≥ 1−ε.

This inequality has a solutionϑ0 for δ < ε (due to (15)).
Finally, for δ = ε/2 we haveϑ0 determined by relation

P (k0, ϑ0 − t0) ≥ 2(1 − ε)(2 − ε)−1. (16)

Theorem 2:Problem COM is solvable within an interval
not less thanϑ0 − t0 determined through (16) withk0 found
through (14) with restrictionµ on controlU large enough to
ensure solvability of equationx2(ϑ

0) = −x∗1(ϑ).

7Lower, in Remark 2 we indicate how to findx∗

1
(ϑ) from these relations.

Theorem 3:For every starting position{t0, x0} with ini-
tially unknownx0 there exists a finite timeT = ϑ0 − t0 for
which the origin{0} is reachable exactly with probability1
whenµ is large enough.

Remark 2:Take the system of inequalities

〈e(i), z〉 ≤ ρ(e(i) | X1[τk])

for all unit orths±e(i), i = 1, n. The solution

Z (n, k) ⊇ X1[ϑ], ϑ ≥ τk,

to this system is a rectangular polyhedron with centerz∗1 =
z∗(n, k). It approximatesX1[τk] from above and may be
used as its substitute so that

Z (n, k) − z∗ ⊇ R(k, ϑ), ϑ ≥ τk

andX1[ϑ] ⊆ z∗ + (Z (n, k) − z∗) ⊆ z∗ + D(0, σ0).

IV. EXAMPLES

A. Output Feedback Impulse Control

Here we present the results of numerical simulations for
the system described below. The presentation will be accom-
panied by computer animation with comparative analysis of
both approaches.

The problem is to design an impulse measurement feed-
back strategy to stop the oscillations of a rigidly suspended
chain ofN loaded springs by applying an impulse control
force to a prescribed node of the chain. The chain also
includes given loads attached in between the springs (the
i-th load is attached to the lower end of thei-th spring).
This is described by the following system of second-order
ODEs:







m1ẅ1 = k2(w2 − w1) − k1w1,
miẅi = ki+1(wi+1 − wi) − ki(wi − wi−1),
mN ẅN= −kN (wN − wN−1) + u,

when t > t0. Herewi is the displacement of thei-th load
from the equilibrium,mi is the mass of thei-th load,ki is
the stiffness coefficient of thei-th spring. The initial state at
time t0 is given by the displacementsw0

i and the velocities
of the loadsẇ0

i .
The goal of the control is to steer the system to a

neighborhood of the equilibrium in given finite time. We
used the worst-case measurement (ξ(t) ≡ 0), leading to the
largest possible information set.

In our numerical experiments we used the following values
of parameters:mi = 1, ki = 1, t0 = 0, t1 = 2πN ,
w0

i = ẇ0
i = 5, r(t) = 0, R(t) = diag(10−4I, 104I) (i.e.

displacements are measured with relatively small error±0,01
and velocities are measured with large error±100), h = 2N ,
∆t = 0,1 for ellipsoidal filter,p(t) = 0, P (t) = 1, m = 0,
M = I.

In Figure 1 we show the dependence of diameter of the
ellipsoidal information set on model timet − t0. Note that
this plot is the same for any size of chainN .

Figure 2 shows the realized impulse control forN = 5.
Note that the dimension of the system here isn = 2N = 10,
and the number of individual impulses (which is13) here is
greater thann.
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Fig. 2. Approximation of realized impulse control forN = 5

B. Output Feedback under Communication Constraints

In Figure 3 we show the average size of the information
setR(k, ϑ) in the problem with communication constraints
for various dimensionsn.

V. CONCLUSIONS

This paper deals withoutput feedback impulse controlun-
der set-membership uncertainty where the control realization
consists of a sequence ofδ-impulses. It indicates solution
schemes and suggests recommendation for computation. The
problem is then generalized to the case of high-order “fast”
controls which solve the terminal control problem in arbitrary
small time. Finally an output feedback control problem is
solved where communication signals for the available noisy
measurements arrive at Poisson instants of time.
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