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Abstract— This paper deals with output feedback impulse
control under set-membership uncertainty where the control
realization consists of a sequence of-impulses. It indicates
solution schemes based on generalized Dynamic Programming
relations of the HJB type and suggests recommendation for
computation. The problem is then generalized to the case of

J(u() = ar U() + ¢(z(t1 +0)) — inf,

dz(t) = A(t)z(t)dt + Bt)AU(t), t € [to, ta]. @)

high-order “fast” controls which solve the terminal control
problem in arbitrary small time. Finally an output feedback
control problem is solved where communication signals for the
available noisy measurements arrive at Poisson instants of time.

Herex(t) € R™ is the state vectol/(-) € BV ([to, t1];R™)

is the generalized controBV ([to, t1]; R™) is the space of
m-vector functions of bounded variation (here we assume
that all functions of bounded variation are left-contingpu

Numerical examples are demonstrated. Matrix functions A(t) € R**", B(t) € R"*™ are assumed
I. INTRODUCTION continuous. The terminal time; is fixed. The terminal

The problem of output feedback control through availabléunction ¢ : R™ — R U {oo} is closed and convex.
measurements under uncertain disturbances (noise) is ondhe information available to control is given by the
of the central issues of control theory. It was thoroughlyollowing measurement equation:
developed within a stochastic model with statistical infar
tion on the noise [1], [2]. However a large array of pending y(t) 2

roblems are to be solved with no such information, but . :
gnly under a set-membership description of the uncertaﬂf“ereg(t)_ € 2() is the bounded n0|se92(t)_e conv R,

For this system we are to solve a particular case of the

items [3]-[7]. This paper deals with one of such problems X
whose specifics are also in the fact thia¢ output feedback measurement feedback control problem [4]. The particular

is to be generated by impulse contrfhe theory of closed- p.roperties of.this simplified version allow to present alfair
loop impulse control, initiated in [8], was developed inS|mpler solution scheme than in the more general case. Here

papers [9], [10] where considered were not only impulsiv.

H(t)x(t) + ().

isa preliminary loose version of the problem.

inputs ofé-type but also impulses of higher order, described Proplem 1:For a given terminal functio(-), find a mea-

by higher derivatives of-functions. Such inputs describe SUrémentimpulse feedback control minimizing the funaion

virtual controls which can solve the terminal control perl 7 (U (), despite the disturbancg.), i.e. minimizing

in finite time equal to zero. Their physically realizable -

approximations allow to solve such problems in arbitrary A U() = max{ JUE) [2()}

small “nano-time”. _ where the maximum is taken over all trajectories consistent
Alternatively considered are problems of closed-loop imgith available measurements (2).

pulse control with measurement signals arriving only at

random instants of time while satisfying a Poisson distribug  The controlled System

tion and being corrupted by bounded stochastic noise. Here

stochasticity is intertwined with a set-membership apphoa !N our initial formulation, the measurement(t) is a

discontinuous function even if the noise is smooth, due to
impulses in control. Here we perform a decomposition of
CONTROL the initial system into two parts, the one with uncertainty

A. The Initial Formulation and the other with impulses.
In this section we start by an impulse control problem Let X(¢,7) be the transition matrix of the homogeneous

modeled by one of minimizing a generalized Meier—Bolzasystem, a solution to the matrix equatioX (t,7)/0t =
A®)X(t,7), X(7,7)=1I.

II. THE PROBLEM OF OUTPUT FEEDBACK IMPULSE
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and the measurement equation becomes The information state thus consists of the information set

Z1[t] which does not depend on the control and the vector

yi(t) = H(6)X (¢, 1)z (t) +&(t) = 25(t) which has to be controlled in such a way that the sum
=y(t) — H{t) X (t,t1)z2(t). x2(t) + Z1[t] would be steered towards the terminal s#t

) , with uncontrollable component?;[t] being estimated on-
We see that the equation faox(¢) does not contain any line P 1l g

uncertain items, hence-(t) is known to the controller.
The measuremeny; (¢) is also expressed through availableD. The Precise Formulation of the Problem

info_rmation — the actual measuremey(t) and the known  Thus we have the set-valued information stgte27, x5},
variablezs(t). where 27 is convex and compact. To proceed further with
C. The Information State and the Information Set the the measurement feedback control problettile trying

q defindh £ th ith to mimic traditional theory under complete information we
¢ '\L%W \Iive need to z'me € stat;]ao the ZYSFem ,V‘at would have to deal with control problems in theetric space
eebl ac n0|sre]:. According to [4]d ere we |st|r_19ur|]§ htw%f convex compact sets, [4], [7]. But the problem treatecher
problems — the one ofuaranteed state estlmatmm_ Ic allows a fairly simpler solution and may be reduced to one in
gives us this state and the problemfe¢dback control in the finite-dimensional space. We may now give a more precise

space of states . formulation for Problem 1.
Suppose the measurement process beging-att;. Then Problem 2: Given position{t, 21, zs}, ¢ € [to, t], indi-

the_ on-Imemform_atlon stateor position of the sys_tem IS cate an impulse feedback control strategy which minimizes
defined as the triple{t, 27t], x2(t)} where Zi[t] is the

information seof all possible states; (¢) consistent with the the cost
system model, the available measuremert), s € [to, t], JU(-)) = Var U(:) + ¢ (Zi[t1] + z2(t1 +0)),
t < t1, and the constrain2 on the unknown but bounded lto,t]
noise&(-). o(Z) = max{p(z) |z € 27},
Set.21[t] is the solution to the problem of guaranteed statghatever be the measuremepi(t) (that is, despite the
estimation [5], [6]. Here unknown measurement noigét) € 2(t)).
24[t] = (WH () (vi (7) — 2(7)) | 7 € [to, 1]}, E. The Solution
where realizations of measuremenfgt) on time interval ~ Let V(¢,z;t1,¢(-)) be the value function in the impulse
t € [to, t] are given. control problem (see [9], [13]) with given terminal funatial
The information set may be also described through ite(2):
support function or funnel equation.
The support functiohof the set2:[t] may be calculated ~ V (£, 25t1,(:)) = glin{\t/‘fr U() + p(x(t +0)) |
through techniques of convex analysis (see [4], [6], [11]). O enl
Note that the measurement equation produces-at;, the z(t) =z, dx(r) = B(T)dU(T)}- (6)
. . -1 * _ 0
E‘;\il‘;s'on zi(to) € H™(to)(yi(to) — 2(to)) = 27’ We Introduce a linear mappin@U|[r, t] = zo(t + 0) — zo(7)
(for 7 = to we simply haveT[tg, ] = z2(t+0)). We estimate
. . :
ol | 23[t]) = il(lf) {/ (<A(¢),y}‘(7)> n the minimum terminal cos¥ (¢, 21, z2) for Problem 2 as
o V(t, 21, 32) <min{ Z(U()) [U()} <

A=A [ 2()dr | $(t) = E}’ < min{ Var U(-) + ¢(21 + z2 + TU[t, t1 + 0])} =

- [to,t1]
where the vector row) satisfies the differential equation
W/’ a = V(£,0:t1, (),

U(-)
Y = A(t)H (t), ¥(tg) = 0. where o (z) = max{p(z + 2) | 2 € 2 + 22},
If the disturbance and hence the measurements are smoottin particular, if o(z) = I(z | .#), ther?
enough, thenZ[t] is the solution to thefunnel equatiof o(@) = Iz | M (21 + 22)).

[12]:
) . . Here — denotes the geometric (Minkowski) difference be-
UEI(BFOU h( 2t + o], tween two convex setsd — B = {x | B+ 2 C A}.
-1 wiey _ The value functionV'(t,z;t1,¢(-)) is the solution to
2N (1) Q(t))) =00 the following variational inequality of Hamilton—Jacobi—

1The support function of a convex sdt is Bellman type [9]:
p(L| A) =max{({,z) |z € A}. min {H:(t,z, Vi, V), Ho(t,2,V;, Vi) =0, (7)
2Here h(A, B) is the Hausdorff distance between two compacts:
h(A,B) = max{h4(A,B),h_(A,B)}, h4(A,B) = min{e | A C 3By I(x | A) we denote the indicator function of the convex getzero

b+e%1}, h—(A,B) = hy(B, A). in A and+oco outside of A).



with initial condition V' (¢1,2) = V(t1,z;t1,¢(-)) and the by higher derivatives of delta-functions. The mathemética
Hamiltonians theory of such functions can be found in [16], [17].
Instead of system (4) we consider
Hl(t7 xafhfw) = 5157

. ()= 0,
Ha(t, 2,60,€,) = min{ (€, Bt)u) + 1] u € SO)}. L S ou, a0
Here S(0) is the unit sphgre iR, .. Here the controk(t) is chosen from the clasB; ,, [«, 3] of
Due to (7), in any positioitt, x) there are two possibilities ¢ontinyous linear functionals over the linear normed space
for the control. Either/; = 0, and the control may choose 1, 1., 3] which consists of; times differentiable functions
dU(t) = 0, or H; > 0, in which case it is necessary thatw(t) : o, ] — R™ with support contained ifie, 5], (see

H, = 0, and the control has a jump in directionB’ () V. [16], [17]) . The normp in Dy, [a, 3] is defined as
The magnitude of the jump is to be selected in such a way ’

(10)

that after the jump we again havé, = 0. ple] = e Yo(e(®), 11 (@' (1), - (P ()],
The computation of the value functiori(¢,z) relies on ’
the following representation due to convex analysis: where~;, v are finite-dimensional norms in spack$' and
R*+1 respectively. The nornp[y] determines its adjoint
V(t,z) = sup[(p,z)—* (p)—I(p | '@H'H[t,m) | p€R"] = norm p*[u] in the spaceD;’m[a,ﬁ]. Hence the controk

o . Z 8 is a distribution of ordek,, < k& which includess-functions
=sup[(p,2) =" () [P € By, - B and their higher derivatives of order upioThen trajectories

Here * denotes the Fenchel conjugate of [11], and %2(t) of the system (10) are distributions froby._, , [a, 5].

B is the unit ball in the vector norm The admissible controlsu(¢) are distributions from
(et Dj; ,lo, 8] for which there exists a distributiom(t)
- - k . o .
||p||[t,t1] = HB (.)pHC[tM — 722?1] HB (T)pH . (9 Dkfl’n[a,ﬁ] which satisfies equation

It is straightforward to check that the function (8) indeed io(t) = Btyu+ ) — f
satisfies the variational inequality (7). in the sense of distributions. The supportgft) is enclosed
In order to evaluate (8) numerically, one replaces thi [ty, 1], wherel[to, t1] C [a, 5].
maximum over[t,#;] in (9) with a maximum over a finite  Here f(*) and f(® are distributions concentrated at points
number of time instants, and the conditig®” (7)p|| <1 ¢, and ¢, respectively. They may be interpreted as initial
(for each of these instants) with a finite number of lineaand final conditions for the “trajectory?,(¢) and may be
inequalities of type(¢;, BT (t)p) < 1 (with vectors/;, represented as
i = 1,N, from the unit sphere) which gives a finite- & &
dimensional optimization problem with a finite number of = f(a) _ Zaj(;(])(t —ty), fO = Zgj(;(a)(t — ).
linear constraints (see [9] for details). =0 =0
We summarize the above results in the following theorem. o . .
Theorem 1:The optimal value of the functionay” (U(-)) Recall that any distributiom € Dy, [a, 5] may be written
in Problem 2 is estimated from above by the value functioft (see [17])

V(t,x) of the ordinary impulse control problem (6), with kB B

terminal functional. The value functionV (¢, z) is the {u, 0) = Z/ (=1)7 =5 dU; (1), (11)
solution to the HJB variational inequality (7). The latter j=0"¢

allows calculating the feedback control strategy obi¢e, =)  whereU; are functions of bounded variation ém, 3], taking
is calculated. values inR™ and constant off, ty) U (¢1, 4.

Remark 1:1t is known [14], [15] that in the absence of  ysing the representation (11) one may see that the problem
uncertainty there exists an optimal control which is the suRyith generalized controls may be reduced to the problem 2

of at mostn individual impulses. for the system with “ordinary” impulse controls:
Since the information se# [¢] is varying, so dis the ter- .

minal functionaly(z), and it is hardly possible to guarantee { #1()= 0,

the number of impulses in the realized control. dzy(t)=B(t)dU(t), a2(to) =0,

However, by recalculating the information set only atwhere matrix
selected instants, ..., 7,,,, One can guarantee the existence
B T g B(t) = (B(t) —B'(t) B"(t) ... (~1)*B®()).

of feedback control withn - n impulses at most.
As indicated in [9], [10], for a completely controllable
system the vectar may be moved from any point’ to any
We now extend the formulation of the previous sectionother pointz! in zero time by control given as the sum of not
instead of allowing impulse controls of only delta-type wemore thann impulsess(®, i = 0, k. But such solutions do
will consider generalized functions (distributions) obar not have a physical interpretation. Their physically rzathle
trary orderk which allow impulses of higher order describedbounded approximations are “fast” controls — piecewise

F. Higher-Order Generalized Controls



constant functions concentrated on arbitrary small iratistv Now the conjugate to the terminal function is the support
These functions may be selected such tHamay be moved function to set#’ and is given by
to x! in arbitrary small “nano-time” (see [10] for details).

1
Our next step will be to indicate some computational tools. ¢*(p) = (p,m") + (p, M'p)* .
As mentioned above, the high order impulse control problem |11 o uTpuUT FEEDBACK UNDER COMMUNICATION
reduces to one with only “ordinary” impulses. Hence the next CONSTRAINTS

part is explained for only the “ordinary” case. To calculate

©*(p), we use ellipsoidal approximations of the information We return to sys_tem. (4). on tlme intervlo, v, W.'th
set as described in the next subsection. measurements coming in discrete time due to equation

i) = Hzxi (7 i)s = 1,k,
G. The Ellipsoidal Approximation y(7) 21(7i) +£(73) ‘

Here we assume that the se®t) and.# are ellipsoids ~ With ¥(7i), 21(7:) €R", to <7y <7 <... <7 < ¥, and
[18]: 2(t) = & (q(t), Q(1)), A4 = & (m, M), with known noise{(r;) is for eachi uniformly distributed on the set
parameterg(t), m € R™ and Q(t), M € R™"*™, 2={neR"||n| <v, t=T,n}

We will further substitute27[¢] by its ellipsoidal approx- ) )
imation %, (t) = & (n(t),Y(¢)). To find it we pass to a The measurement signals are assumed to arrive at random

discrete-time analogue of (5) and then apply the formulime instantsr; distributed according to Poissof21], with
for external approximation of intersection of two ellipdsi réquencyA.

(see [19], [20]): Problem COM Find a time interval of length} — ¢, and
a control strategyy = U(t, Z1,x2) restricted by condition
Y(t+At)=azZ ", [Vag] U(-) < p, such that the output feedback terminal control
to,
n(t+At) = Z7 (xaWig + (1 — m)Waga), problem
where min{ ||z (9) + 22(O)|| | U} <o (12)

under given type of observations would be solvable with

Z=1Wi+(1-mW,, probability P° > 1 — ¢, having+y, ¢ > 0 given in advance.

Wy =Y~'(t), Wo=H"(t)Q '(t)H(t), In order to ensure (12) we need to have the inclusion
a1 =n(t), g =H ) (yt) —q@d), x2() + 21[9] € v€(0), which could be ensured by having
11— (] — o W Z YW (0 — x2(¥) = —af, 21[9] C x5 + €(0) for somex;. Here%(0)
“ (1 =) (g2 — a1, W2 e =), is a unit cube iNR™ with centero.
and parameter: is found numerically from the equation Our Problem COM is thus reduced to two:
Problem I:find ¢ which ensures?; (9] C v€(0) 4«3 for
a(det Z)* tr(Z7H (W, — Wa))— somex} with probability P°, having~, ¢ given, and
— n(det 2)2(2 (n(t + At), Wiy — Wago) + Problem II: ensurexzy(¥) = —27.
With 2% and ¥ given, the second problem may be solved
t+ At - t+ At)) — 1
(n(t + A1), (W2 = Win(t + Ab) according to [9]. We therefore concentrate on Problem |I.
= (01, Wiq1) + (g2, Wage)) = 0. Since the unknown; (t) = ¢ = const, and.2 = —2, we

We then find the internal ellipsoidal approximation of thehave
set ' = M — @+(t)' It is an eII|p50|d///L =& (m’,M’) o= ﬂ{Hﬁl(y(ti) + Q) ‘ j = 1, e k} — +,@(k’,’l9),

with parameters ) .
m' =m — n(t), Rk, 0) =(WH () +2) [i=1,....k}, 9> t,

1 1 where&*(¢;) is the realization of(¢;) at thei-th measure-
szG—(%M@)>M+G—(“”@)>K

ment, Z(k,¥) is the measurement error aftér measure-
(.Yl (€, ML) ments, and:* is the realized value of.
where/ is a “good” direction [18]. Our aim will now be to figure out with what probability

Finally we use an ellipsoid® (m’, M) as the target set to We could have
calculate the value function of the impulse control problem Z(k,0) € 7€(0). 13)
and the impulse feedback control. The answer to this question is possible by direct cal-
culation, using the reasoning of articles [21]. Indeed, the
n-dimensional cube2 has2™ vertices. Then, if the noise
) variable £(¢;), ¢« = 1,k, will happen to run around small
pp| & (r,R)) = (p,7) +(p,Rp)2 . neighborhood<?(v,,,, o) of all the vertice& v,,,, m = 1,27,

If matrix R is non-degenerate, then

“Ellipsoid & (r, R) with centerr € R™ and configuration matrix® > 0,
R € R™"*™ js a convex set with support function

5The Poisson distribution is a standard tool for modeling conication
EMR) ={zeR"| (z—r, R (z—7)) < 1}. signal transmission in discrete time.

SHere we consider-dimensional cubes as neighborho@d@, , o) with
centerv,, and edges of lengtho.



we will have Z(k,9) C 2(0,0) and the volume&Vg(k, 9) Theorem 3:For every starting positiofity, z°} with ini-
of Z(k,?) will tend to zero witho tending to zero tially unknown z° there exists a finite tim& = 9¥° — t, for
n which the origin{0} is reachable exactly with probability
Va(k,9) < (20)" — 0. wheny is large enough.
In fact, the same result hold if the noise variable runs only Remark 2: Take the system of inequalities

through neighborhoods af + 1 vertices forming a simplex: <e(¢)7 2) < p(e(i) | 24[m))
v = (—v,—v,...,—V), vg = (V,—V,—V,...,—V), U3 = ' o
(v, v, =1, ..., =), €tC,Uns1 = (=1, —1, ..., —1, D). for all unit orths+e(?, s = T, n. The solution
For each of those verticeg, j = 1,n_+ 1, the probability Z(n,k) D 24[9], 9> T,
that afterk measurements the inclusidit;) € Z(k,9) N . _ .
9(v;,0) is true at least once will b& (o, k,v;) =1—(1— this system is a rectangular polyhedron with cenfet=
o"v~")k and the probability that this would be true for all z"(n, k). It approximates2;[r;] from above and may be
the vertices of2 is used as its substitute so that
P(o,k) = (1 — (1 — o™ ™)k)n+L, Z(n, k) = 2" 2 %Z(k,0), 0=

* * * 0
With n fixed, clearlylim, ... P(o,k) = 1 for anyo > 0. @nd21l] € 2"+ (Z(n, k) = 2) € 2" + 2(0,0").
Therefore, we now have to take= ¢° small enough to IV. EXAMPLES
ensure (13) and numbér= k° which ensures A. Output Feedback Impulse Control

P(0% k% >1-4. (14) Here we present the results of numerical simulations for
the system described below. The presentation will be accom-
anied by computer animation with comparative analysis of
oth approaches.

The problem is to design an impulse measurement feed-

Then, clearly, we have?;[J] C z3(9) + 2(0, ) for some
x5 (9¥) which can be determined from formula (a discret{
version of formula given fop(¢ | 21[9]) given in subsection

7
II-C) back strategy to stop the oscillations of a rigidly suspende
k chain of N loaded springs by applying an impulse control
p(l| Zi[mk]) = inf{z <€(i),y*(n)> +p(—09 | 2) ‘ force to a prescribed node of the chain. The chain also
i=1 includes given loads attached in between the springs (the
‘ ko i-th load is attached to the lower end of tih spring).
(M eR™ i =1k, Zﬁ(l) = f}- This is described by the following system of second-order
i=1 ODEs:
But to have such a numbéf, the interval of observations myty = ka(we — wp) — kyws,
must be sufficiently large. The properties of the Poisson { mil; = ki1 (wip1 — w;) — ki(w; —wi—1),
distribution with frequency\ indicate that the probability myin= —kn(wn —wN_1) + u,

P(k,9 — to) of k measurements within intervadly,J] is

given by relation whent > ty,. Herew; is the displacement of théth load

from the equilibrium,m; is the mass of the-th load, &; is

k-l (A9 —to))? the stiffness coefficient of theth spring. The initial state at
P(k,9—to) =1- ) ~————exp(=A(J —t)). time ¢, is given by the displacements? and the velocities
=0 I of the loadsu)?.
Clearly, for anyk we have The goal of the control is to steer the system to a
neighborhood of the equilibrium in given finite time. We
P(k, 0 —to) =1, ¥ —co. (15)  ysed the worst-case measuremeit)(= 0), leading to the
Summarizing the above we observe that the interval d@rgest possible information set.
observationst,, 9°] which ensures®® > 1—¢ is determined In our numerical experiments we used the following values
from inequality of parametersm; = 1, k;, = 1, t¢ = 0, t; = 27N,

o 0 o 10 0 0 wd =@l =5, r(t) = 0, R(t) = diag(107*1,10*I) (i.e.
P = P(k",0—to)P(c”, k") = P(k", 0" —t0)(1-0) > 1—¢.  displacements are measured with relatively small et@f1
This inequality has a solutiof® for § < e (due to (15)). ~ @nd velocities are measured with large eed0), h = 2N,

Finally, for § = ¢/2 we havey° determined by relation f/[t = 0,1 for ellipsoidal filter, p(t) = 0, P(t) = 1, m = 0,

= 1.
Pk, 0% —tg) > 2(1 —&)(2 - ). (16) In Figure 1 we show the dependence of diameter of the

Theorem 2:Problem COM is solvable within an interval ellipsoidal information set on model time— ¢,. Note that
not less than?® — ¢, determined through (16) with® found this plot is the same for any size of chaW

through (14) with restriction on controlU large enough to _Figuré 2 shows the realized impulse control fgr= 5.
ensure solvability of equation, (9°) = —a (¥). Note that the dimension of the system hera is 2N = 10,

and the number of individual impulses (which1i8) here is
“Lower, in Remark 2 we indicate how to fing (9) from these relations. greater tham.
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