
Output Feedback Strategies for Systems with Impulsive and Fast Controls

A. N. Daryin, I. A. Digailova and A. B. Kurzhanski · Moscow State (Lomonosov) University

Abstract

This paper deals with output feedback impulse control under set-
membership uncertainty where the control realization consists of a sequence
of δ-impulses. It indicates set-valued approaches for non-probabilistic con-
tinuous measurements and especially — for set-valued approach to stochastic
case with discrete measurements.
The solution schemes are based on generalized Dynamic Programming rela-
tions of the HJB type. The problem is generalized to the case of high-order
“fast” controls which solve the terminal control problem in arbitrary small
time. Finally an output feedback control problem is solved where communi-
cation signals for the available noisy measurements arrive at Poisson instants
of time. Numerical examples are demonstrated.

The Problem of Output Feedback

Impulse Control

The control system:

dx(t) = A(t)x(t)dt +B(t)dU(t), t ∈ [t0, t1]

• x(t) ∈ R
n — the state.

• U(t) ∈ BV [t0, t1] — the impulse control.

• The terminal time t1 is fixed.

Generalized Mayer–Bolza functional:

J(u(·)) = Var
[t0,t1]

U(·) + ϕ(x(t1 + 0)) → inf

• ϕ : R
n → R ∪ {∞} is closed and convex.

Measurement equation:

y(t) = H(t)x(t) + ξ(t).

Problem 1. For a given terminal function ϕ(·), find a measurement
impulse feedback control minimizing the functional J(U(·)), despite the
disturbance ξ(·), i.e. minimizing

J (U(·)) = max{J(U(·)) | x(·)},

over all trajectories consistent with available measurements.

The Information State

We decompose the system into two parts:

• the one with uncertainty

• the other with impulses.

x(t) = X(t, t1)x1(t) +X(t, t1)x2(t),

{

ẋ1(t)= 0,
dx2(t)= B(t)dU(t), x2(t0) = 0,

X(t, τ ) — the transition matrix: ∂X(t, τ )/∂t = A(t)X(t, τ ), X(τ, τ ) = I .
The new measurement equation is

y1(t) = H(t)X(t, t1)x1(t) + ξ(t) = y(t) −H(t)X(t, t1)x2(t).

Here we distinguish two problems —

• guaranteed state estimation

• feedback control in the space of states

(See A. B. Kurzhanski, “The problem of measurement feedback control,” Journal of Applied Mathematics

and Mechanics, vol. 68, no. 4, pp. 487–501, 2004.)

The information state: {t,X1[t], x2(t)}
X1[t] is the information set of all possible states x1(t) consistent with

• the system model

• the available measurement y1(s), s ∈ [t0, t], t ≤ t1,

• the constraint Q on the unknown but bounded noise ξ(·).

X1[t] =
⋂

{H−1(t) (y∗1(τ ) − Q(τ )) | τ ∈ [t0, t]},

where realized measurements y∗1(t) on time interval t ∈ [t0, t] are given.

The information set may be also described through

• support function

ρ(ℓ | X1[t]) = inf
λ(·)

{
∫ t

t0

(

〈λ(τ ), y∗1(τ )〉++ρ(−λ(τ ) | Q(τ ))
)

dτ | ψ(t) = ℓ

}

,

where the vector row ψ satisfies the ODE ψ̇ = λ(t)H(t), ψ(t0) = 0.

• funnel equation (here h(A,B) is the Hausdorff distance between two compacts: h(A,B) =

max{h+(A,B), h−(A,B)}, h+(A,B) = min{ε | A ⊆ b + εB1}, h−(A,B) = h+(B,A)):

lim
σ→0+0

σ−1h
(

X1[t + σ],X1[t] ∩H
−1(t)(y∗1(t) − Q(t))

)

= 0.

(See A. B. Kurzhanski and T. F. Filippova, “On the theory of trajectory tubes: a mathematical formalism

for uncertain dynamics, viability and control,” in Advances in Nonlinear Dynamics and Control, ser.

PSCT. Boston: Birkhäuser, 1993, no. 17, pp. 122–188.)

The Precise Formulation of the Problem

Problem 2. Given position {t,X1, x2}, t ∈ [t0, t1], indicate an impulse
feedback control strategy which minimizes the cost

J (U(·)) = Var
[t0,t1]

U(·) + ϕ (X1[t1] + x2(t1 + 0)) ,

ϕ(X ) = max{ϕ(x) | x ∈ X },

whatever be the measurement y1(t).

The Solution

Denote by V (t, x; t1, ϕ(·)) the value function in the impulse control prob-
lem with given terminal functional ϕ(x):

V (t, x; t1, ϕ(·)) = min
U(·)

{

Var
[t,t1]

U(·)+ϕ(x(t1+0))
∣

∣x(t) = x, dx = B(τ )dU
}

.

(See A. N. Daryin, A. B. Kurzhanski, and A. V. Seleznev, “A dynamic programming approach to the impulse

control synthesis problem,” in Proc. Joint 44th IEEE CDC-ECC 2005. Seville: IEEE, 2005.)

An estimate for the minimum terminal cost V (t,X1, x2) in Problem 2:

V (t,X1, x2) ≤ V (t, 0; t1,ϕ(·)), ϕ(x) = max{ϕ(x + z) | z ∈ X1 + x2}.

In particular, for ϕ(x) = I(x | M ): ϕ(x) = I(x | M −̇ (X1 + x2)).

• I(x | A) is the indicator function of the set A (0 in A, +∞ outside of A).

• −̇ is the geometric (Minkowski) difference between two convex sets:
A −̇ B = {x | B + x ⊆ A}.

The value function V (t, x; t1, ϕ(·)) is the solution to the following variational
inequality of Hamilton–Jacobi–Bellman type:

min {H1(t, x, Vt, Vx), H2(t, x, Vt, Vx)} = 0,

with initial condition V (t1, x) = V (t1, x; t1, ϕ(·)) and the Hamiltonians

H1(t, x, ξt, ξx) = ξt, H2(t, x, ξt, ξx) = min{〈ξx, B(t)u〉 + 1 | ‖u‖ = 1}.

In any position (t, x):

• either H1 = 0, and the control may choose dU(t) = 0,

• or H1 > 0, in which case it is necessary that H2 = 0, and the control has
a jump in direction −B′(t)Vx.

V (t, x) may be computed through formula

V (t, x) = sup[〈p, x〉 − ϕ∗(p) − I(p | B‖·‖[t,t1]
) | p ∈ R

n] =

= sup[〈p, x〉 − ϕ∗(p) | p ∈ B‖·‖[t,t1]
].

• ϕ∗ is the Fenchel conjugate of ϕ

•B‖·‖[[t,t1]]
is the unit ball in the vector norm ‖p‖[t,t1]

=
∥

∥

∥
BT (·)p

∥

∥

∥

C[t,t1]

Theorem 1.The optimal value of the functional J (U(·)) in Problem 2
is estimated from above by the value function V (t, x) of the ordinary
impulse control problem with terminal functional ϕ. The value function
V (t, x) is the solution to the HJB variational inequality.

The Ellipsoidal Approximation

Ellipsoid E (r, R) is a convex set with support function

ρ(p | E (r, R)) = 〈p, r〉 + 〈p,Rp〉
1
2 .

• center r ∈ R
n

• configuration matrix R ≥ 0, R ∈ R
n×n

If matrix R is non-degenerate, then

E (r, R) = {x ∈ R
n |
〈

x− r, R−1(x− r)
〉

≤ 1}.

(See A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, ser. SCFA. Boston:

Birkhäuser, 1997.)

Assume the sets Q(t) and M to be known ellipsoids

Q(t) = E (q(t), Q(t)) , M = E (m,M) ,

Substitute X1[t] by its ellipsoidal approximation Y+(t) = E (η(t), Y (t))

• discrete-time analogue of the funnel equation

• external ellipsoidal approximation of intersection of two ellipsoids

(See L. Ros, A. Sabater, and F. Thomas, “An ellipsoidal calculus based on propagation and fusion,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 32, no. 4, 202.)

Y (t + ∆t) = αZ−1, η(t + ∆t) = Z−1(πW1q1 + (1 − π)W2q2),

where

Z = πW1 + (1 − π)W2, W1 = Y −1(t), W2 = HT (t)Q−1(t)H(t),

q1 = η(t), q2 = H−1(t)(y(t) − q(t)),

α = 1 − π(1 − π)
〈

q2 − q1,W2Z
−1W1(q2 − q1)

〉

,

and parameter π is found numerically from the equation

α(detZ)2 tr(Z−1(W1 −W2)) − η(detZ)2
(

2 〈η(t + ∆t),W1q1 −W2q2〉+

〈η(t + ∆t), (W2 −W1)η(t + ∆t)〉 − 〈q1,W1q1〉 + 〈q2,W2q2〉
)

= 0.

The internal approximation of M ′ = M −̇ Y+(t) is M ′
− = E

(

m′,M ′
)

m′ = m− η(t),

M ′ =

(

1 −

(

〈ℓ,Mℓ〉

〈ℓ, Y ℓ〉

)
1
2

)

M +

(

1 −

(

〈ℓ, Y ℓ〉

〈ℓ,Mℓ〉

)
1
2

)

Y.

Finally we use an ellipsoid E
(

m′,M ′
)

as the target set:

ϕ
∗(p) =

〈

p,m′〉 +
〈

p,M ′p
〉

1
2 .

Output Feedback

under Communication Constraints

Suppose that measurements are coming in discrete time:

y(τi) = Hx1(τi) + ξ(τi), i = 1, k, t0 ≤ τ1 < τ2 < . . . < τk ≤ ϑ

and the noise ξ(τi) is uniformly distributed on the set

Q = {η ∈ R
n | |ηℓ| ≤ ν, ℓ = 1, n}.

The measurements arrive at Poisson time instants τi with frequency λ.

Problem COM. Find a time interval of length ϑ − t0 and a control
strategy U = U(t,X1, x2) restricted by condition Var[t0,ϑ]U(·) ≤ µ, such
that the output feedback terminal control problem

min{‖x1(ϑ) + x2(ϑ)‖ | U} ≤ γ

under given type of observations would be solvable with probability
P 0 ≥ 1 − ε, having γ, ε > 0 given in advance.

Problem COM is reduced to two problems:

•Problem I: find ϑ which ensures X1[ϑ] ⊆ γC (0)+x∗1 for some x∗1 with

probability P 0, having γ, ε given (C (0) denotes a unit cube in R
n with

center 0.)

• Problem II: ensure x2(ϑ) = −x∗1.

Since the unknown x1(t) = c = const, and Q = −Q, we have

c ∈
⋂

{H−1(y(ti) + Q) | i = 1, . . . , k} = c∗ + R(k, ϑ),

R(k, ϑ) =
⋂

{H−1(ξ∗(ti) + Q) | i = 1, . . . , k}, ϑ > tk,

where ξ∗(ti) is the realization of ξ(ti), R(k, ϑ) is the measurement error
after k measurements, and c∗ is the realized value of c.

? — With what probability we could have R(k, ϑ) ⊆ γC (0)?
If ξ(ti) runs around small cubic neighborhoods D(vm, σ) of all the 2n ver-
tices vm, m = 1, 2n, we will have R(k, ϑ) ⊂ D(0, σ) and the volume
VR(k, ϑ) of R(k, ϑ) will tend to zero with σ tending to zero

VR(k, ϑ) ≤ (2σ)n → 0.

(See A. B. Kurzhanski, “Identification: a theory of guaranteed estimates,” in From Data to Model, J. C.

Willems, Ed. Springer, 1989, pp. 135–214.)

The same holds for any n + 1 vertices vj forming a simplex. For each
of vj the probability that after k measurements the inclusion ξ(ti) ∈

R(k, ϑ)∩D(vj, σ) is true at least once will be P (σ, k, vj) = 1−(1−σnν−n)k

and the probability that this would be true for all the vertices of Q is

P (σ, k) = (1 − (1 − σnν−n)k)n+1 → 1 ∀σ > 0.

Take σ = σ0 ensuring R(k, ϑ) ⊆ γC (0) and number k = k0 ensuring
P (σ0, k0) ≥ 1 − δ. Then X1[ϑ] ⊆ x∗1(ϑ) + D(0, σ0) for some x∗1(ϑ) deter-
mined from

ρ(ℓ | X1[τk]) = inf
{

k
∑

i=1

〈

ℓ(i), y∗(τi)
〉

+ ρ(−ℓ(i) | Q)
∣

∣

∣

ℓ(i) ∈ R
n, i = 1, k,

k
∑

i=1

ℓ(i) = ℓ
}

.

The probability P (k, ϑ− t0) of k measurements within interval [t0, ϑ] is

P (k, ϑ− t0) = 1 −

k−1
∑

j=0

(λ(ϑ− t0))
j

j!
exp(−λ(ϑ− t0)) → 1 ∀k.

The interval of observations [t0, ϑ
0] ensuring P 0 ≥ 1−ε is determined from

inequality

P 0 = P (k0, ϑ− t0)P (σ0, k0) ≥ P (k0, ϑ0 − t0)(1 − δ) ≥ 1 − ε.

Finally, for δ = ε/2 we have ϑ0 determined by relation

P (k0, ϑ0 − t0) ≥ 2(1 − ε)(2 − ε)−1.

Theorem 2. Problem COM is solvable within an interval not less than
ϑ0−t0, with restriction µ on control U large enough to ensure solvability
of equation x2(ϑ

0) = −x∗1(ϑ).

Theorem 3.For every starting position {t0, x
0} with initially unknown

x0 there exists a finite time T = ϑ0 − t0 for which the origin {0} is
reachable exactly with probability 1 when µ is large enough.

Remark 1. The scheme above is extendible to the case of time-varying
matrices (for example, for periodic systems)

H(t) = HX(t0, t)x, B(t) = X(t0, t)B.

Numerical Experiments

Numerical algorithms are implemented using the Ellipsoidal Toolbox.
(See A. A. Kurzhanskiy and P. Varaiya, Ellipsoidal toolbox, http://code.google.com/p/ellipsoids/)

See computer simulations on the laptop.


