
 

Game-Theoretic Control 
 

under Different Classes of 
 

Restrictions on Pursuer and Evader 
 
 

Alexander Daryin 
 

Moscow State University 
Faculty of Computation Mathematics and Cybernetics 

Systems Analysis Department 



Introduction 
 

∗ Usually similar constraint classes are used for control and 

disturbances within the guaranteed approach: 

⇒ Hard Bounds (Geometric)  

⇒ Soft Bounds (Integral) 

 

∗ In this work a combination of these constraints is considered: 

 

Hard Bounds   &   Soft Bounds 

on Control      on Disturbance 

 
       

 
 



 

Problem Formulation 
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Control is a closed-loop strategy with memory 
satisfying geometric constraint (hard bounds): 
 

 ( ) ( )( ) ( ) 0 1, , ,t x u t t t t⋅ ⋅ ⊆ ≤ ≤U P
 

 
Disturbance is a continuous function 
satisfying integral constraint (soft bound): 
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Problem I: 
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Equivalent Problem Formulation 
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Control is a closed strategy satisfying geometric constraint: 
 

( ) ( ) 0 1, , ,t x k t t t t⊆ ≤ ≤U P  
 
Disturbance is a continuous function 
such that trajectories satisfy a state constraint: 
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The meaning of ( )k t  is disturbance reserve.  
 
The current value of ( )k t  is assumed to be known to the 
control, since it can be calculated. 



 

Equivalent Problem Formulation (continued) 
 

Problem II: 
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Problem II is equivalent to Problem I.



 
 

Solvability Domain and Terminal Target Set Sections 
 
Solvability domain sections 
 

 

1, , nx x…

k

[ ]t∗W

[ ] ( ) [ ]{ }, ,k t x x k t∗ ∗= ∈W W

Solvability Domain is 
not convex 
 
Its sections are convex 

 
 
Terminal Target Set Sections 
  

( ) ( ){ },k x x k= ∈M M
 

 

Assumptions on ( )kM : 
1) ( )kM  is non-increasing, i.e. 

( ) ( )1 2 1 2 .k k k k≥ ⇒ ⊆M M  
2) ( )kM  is continuous. 
3) Values of ( )kM  are convex compacts 

(although ( )kM  itself may be nor convex nor compact). 
 
 
 
 



 

Dynamic Programming Approach 
 

Value Function 
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Hamilton-Jacobi-Bellman-Isaacs Equation: 
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Semigroup Property (Principle of Optimality) 
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Control Synthesis using the Value Function 
  

 
( ) ( ), , Arg min ,Vt x k u u t

x
∗ ⎧ ⎫∂

= ∈⎨ ⎬∂⎩ ⎭
U P

 



 

Alternated Integral Construction 
 
Max-min solvability domain for open-loop control strategies: 
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(*) cf.: solvability domain in the case of geometric constraints 
(Pontryagin, 1980; Kurzhanski and Melnikov, 2000): 
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Upper integral sums: 
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Alternated Integral Construction (continued) 
 
Upper Alternated Integral 
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Funnel Equation 
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Lower alternated integral is constructed the same way as 
upper one using the min-max open-loop solvability domains. 
 
Alternated Integral: 
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 Control Synthesis using the Extremal Aiming Rule 
 
Extremal Aiming Rule (Krasovski, 1971) may be applied to find the 
control synthesis. 
 
 
Upper Estimate for the Value Function: 
 

 ( ) [ ]( )2, , , ,V t x k d x k t∗≤ W
 

 
Full derivative of distance from the solvability domain: 
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or 
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Control Synthesis: 
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Another Combination of Constraints 
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Control is a feedback strategy such that trajectories satisfy a 
state constraint: 
 

( )1 0,k t ≥  
 

which is equivalent (for single-valued controls) to soft bound 
 

( ) ( )( ) ( )1

0

2

0, ,
t

t
u t x t k t dt k t≤∫  

 
Disturbance satisfies geometric constraint: 
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Max-min solvability domain for open-loop control strategies: 
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Solvability domain funnel equation: 
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Hamilton-Jacobi-Bellman-Isaacs Equation: 
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Control Synthesis: 
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( ) [ ]( )2, , , ,V t x k d x k t∗= W  
 



 
 

1d Solvability Domain 
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Closed Loop  
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Conclusion 
 
1. Game-Theoretic Control Synthesis problem has been 

considered for an uncertain system where control and 

disturbance are chosen from different classes. 

 

2. Dynamic Programming techniques can be applied to solve the 

problem, but this requires finding the solution of HJBI equation. 

 

3. Pontryagin’s Alternated Integral scheme can be adapted to 

find the solvability domain for this problem. 

 

4. Extremal Aiming Rule gives the solution of control synthesis 

problem when the solvability tube is known. 
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