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Abstract: This work considers the problem of control synthesis for uncertain systems
when control and disturbance are subject to geometric and integral constraints respec-
tively (and vice versa). Solution is based on combination of dynamic programming
techniques and convex analysis. An analogue of Pontryagin’s alternated integral is
developed, which is proved to be the solution of an evolution equation. Control
synthesis is then built using extremal aiming rule. Hamilton-Jacobi-Bellman-Isaacs
equation is obtained for the value function. Copyright © 2001 IFAC
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1. INTRODUCTION

It is customary to consider that control and dis-
turbance belong to classes of the same kind when
dealing with the problem of control synthesis un-
der uncertainty. For example, both are subject to
geometric (Krasovski, 1971; Kurzhanski, 1999) or
integral (Bagar and Bernhard, 1995) constraints.
However, in practical problems it is not always
the case. We shall consider a problem of control
synthesis under uncertainty with geometric con-
straints on control and integral constraints on dis-
turbance (for reverse situation a brief formulation
of results will be given). While solving this prob-
lem, we follow the lines of the article by Kurzhan-
ski and Melnikov (2000), but with different types
of constraints.
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2. PROBLEM FORMULATION

The system under consideration is

z(t) € A(t)z(t) + BOU(t, z(-),u(-)) +
+ C(t)v(t), teT=]to,t1] (1)

with continuous matrix functions A(t), B(t) and
C(t), the latter also being injective for all ¢t €
T. Here z(t) € R"™ is the state space vector,
Uit) = U(t,z(-),u(-)) € RP is the nonlinear
control strategy with memory, and v(t) € R? is
the noise input. The control input is restricted for
almost all ¢ € T by a geometric constraint

Ut) € P() (2)

where P(-) is a given multivalued mapping with
nonempty convex compact values continuous in
the Hausdorff metric. The disturbance v(-) is a Le-
besgue-measurable function satisfying quadratic
integral constraint

11
/ (0(), Q(t)u(t)) dt < v, 3)

to



where Q(t) is a positively defined matrix function
continuous on the segment T' = [to, ¢1].

Two classes of controls will be considered further:

(1) closed-loop strategies with memory (Ucr,m):
multivalued functions U(t, z(-),u(-)) C P(t)
assuring the existence and extendability of
solutions of the differential inclusion (1)
whatever continuous function v(-) is chosen,
and

(2) open-loop controls (UoL): measurable vector
functions u = u(t) satisfying (2). This class
is only necessary for intermediate construc-
tions.

Remark 1. Within the class of closed loop controls
without memory U(t, z) the semigroup property of
solvability tubes (i.e., the principle of optimality)
is not satisfied, that’s why controls with memory
should by used.

Problem 1. Given a convex compact terminal tar-
get set M, specify a solvability set W(to,t1, M) =
Wlto] and a closed loop control strategy U €
Ucr,m such that all solutions of the differential
inclusion (1) that start from any position (tg,z) €
T x W][to] would reach the set M regardless of any
disturbance v(-) restricted by (3).

2.1 Equivalent problem

System (1) can be rewritten in a simpler form

i(t) € U(t, z(-),u(-) +o(t),
teT = [to,tl] (4)

with new constraints
U(t) € Polt) (5)
and
t1
JRCCNCROIE B2
where
PO (t) = S(tla t)B(t)P(t)a
Qo(t) = S(t1,)(CHQ(H)C' (1)1 S(t, 1),
and S(7,t) stands for the matrix solution of the
equation
aS(t, 1)
ot

Terminal target set M remains the same after this
change of variables.

=A@®)S(t,7), S(r,7)=1I

Without loss of generality, system (4) with con-
straints (5), (6) will be further considered, omit-
ting zero indices.

Problem 1 can be simplified by introducing addi-
tional state variable k(t) by means of the following
differential equation:

k(t) = —((®), Qt)o(®), k(o) =v.  (7)

Current value of this variable is assumed known to
the control because it can be deduced from state
and control trajectories.

Now integral constraint (3) can be recasted as a
state constraint

k(t) >0,

and it is easy to prove that problem 1 is equivalent
to the following one (when M = M x [0, 00)):

to <t <y, (8)

Problem 2. Given the extended terminal set M C
R specify a solvability set W*(t,t;, M) =
W*[t] and a state feedback strategy U(t,x,k) €
Ucr, such that all solutions of the differential
inclusion

B()) o (Ut o(t), k() +v(t)
(k(t)> e( —(w(t), Q(t)v(t)) ) 9)

that start from any position (tg,z,k) € T X
W*[to] would reach the set M regardless of any
disturbance v(-) which ensures the fulfillment of
state constraint (8).

Even though initial system (1) was linear, ex-
tended system in the problem 2 is nonlinear be-
cause of the equation (7), and moreover it has
a state constraint (8). This results in solvability
domains not being convex even in the most simple
cases (fig. 1, 2). To have a possibility of applying
convex analysis techniques, instead of terminal
target sets and solvability domains themselves
their sections at constant k levels will be consid-
ered:

M(k) = {z| (z,k) € M}, (10)
Wik, t] = {z | (z, k) e Wt]} (1)

These sections are, on the contrary, always convex.
It will be assumed that multivalued mapping
M(k) has compact convex values and it is non-
increasing, i.e.

k1 > ko = M(kl) C M(kz)

It will be shown further that the key element
in the solution of the control synthesis problem
2 is the multivalued mapping W*[t] which can
be computed using an analogue of Pontryagin’s
alternated integral (Pontryagin, 1980; Varaiya and
Lin, 1969; Nikolski, 1985). Once this mapping
is found, control synthesis is obtained by apply-
ing the extremal aiming rule (Krasovski, 1971;
Krasovski and Subbotin, 1988). Ellipsoidal cal-
culus developed by Kurzhanski and Vélyi (1997)
can be used to find inner approximation of the
solvability domain and to obtain control synthesis



in form of an “analytical regulator”, i.e. in closed
form.

3. SEQUENTIAL MAXIMIN AND MINIMAX

Definition 2. Mazimin solvability domain W [t]
(within the class of open-loop controls) is the set
of all positions (z, k) such that for any disturbance
input v(-) satisfying (8) there exists an open-loop
control u(-) ensuring z(t1) € M(k(t1)).

Definition 3. Minimaz solvability domain W ~[t]
(within the class of open-loop controls) is the set
of all positions (z,k) such that there exists an
open-loop control u(-) ensuring z(t1) € M(k(t1))
regardless of any disturbance input v(-) satisfying

®).

Lemma 4. The following formulae are true for
the sections of maximin and minimax solvability
domains:

W+[k7t] = W+(k7t7t17M(')) =

= M(y) - 1’P(T)dT -
[, (o= [ perer)
—VEk=7Q(t,t), (12)
Wk, = [ M) =VE=1Q(tt) -

0<y<k
t1
- P(r)dr (13)
t

where Q(t,t1) is an ellipsoid
t1
Q7 (r) dT) =
¢

T " ) dr _lm <15
<( Q) >\}

(14)

At 1) = € (0,

= {x
in particular, when Q(t) = 1, then

O(t,tr) = V=B, B={z| o]l <1}
Corollary 5. When M = M x[0,00),i.e. M(k) =

M, expressions (12) and (13) take up the following
form:

Wk, = <M _ /ttl P(r) dr) S VRO ),

t1

P(r)dr.

Wkt = M- VEQ(t,t1) —

t

Now, using these open-loop solvability sets upper
and lower alternated integrals will be constructed.
Let T = {70,... ,7m} be an arbitrary subdivision
of interval [t,t1], where 7; — 1,1 = 0; > 0. As a
first step at instant t; let

Wik, mm] = M(k). (15)

Then, at each step find the open-loop solvability
set

Wik, 1ic] = WH(k, 1ic1, 7, WAL, 1)), (16)
which due to (12) gives

Wkl = () (Wb -

0k
- [ P(r)df) CJE= A0 ). (17)

Finally, the value
Wik, mo] = It (k,t,t:, M(), T)  (18)

is called the wupper integral sum corresponding
to the subdivision 7. The latter is the solvabil-
ity set for the motion correction problem when
at each of the instants 7; the current position
(z(73), k(7)) and disturbance values v(-) on the
interval [7;, 7;4+1] are reported to the control.

Definition 6. If there exists a Hausdorff limit
Itlk,t] = Zt(k,t,t1, M(-)) of upper integral
sums when max {o;} — 0, it is called the upper
alternated integral.

Lower integral sums T~ (k,t,t1, M(-),T) and low-
er alternated integral T~ [k,t] are constructed the
same way as upper alternated integral using min-
imax solvability sets in the class of open-loop
controls.

If both lower and upper integral exist and they
coincide, the set

I[k,t] = TF[k, 1] = T [k, {] (19)

is then called the alternated integral, or alternated
solvability set of the problem 2.

Lemma 7. Once IT[v,t9] # &, the multivalued
function ZT[k, ] is the maximum solution of the
evolution equation (for t € T', k € [0,v])

lim — max
oc—0 g 0<y<Lk

he (THk,t = 0] + Vol — 7)€ (0,71 (1),
THt] - oP() = 0. (20)
Lemma 8. If both upper and lower alternated
integrals exist, the following inclusion is true:
T [k, t] C W*[k,t] C ZT[k,1]. (21)
Theorem 9. (1) If the alternated integral exists,

it coincides with the solvability domain of
problem 2:

Ik, t] = W*[k, ). (22)



Fig. 1. Maximin Solvability Domain Boundary for
One-Dimensional Case

Fig. 2. Solvability Domain Boundary for One-
Dimensional Case

(2) Values of alternated integral satisfy the semi-
group property in backward time (that is, the
principle of optimality):

Z(ka t,t1, M()) =
=I(k,t,T,I(',T,tl,M('))). (23)

4. CONTROL SYNTHESIS
4.1 Value Function

The problem 2 does not contain any optimization
criterion: it is only necessary to find some “guar-
anteeing” solution. Nevertheless, this problem can
be posed as an extremal one and solved using
dynamic programming techniques. With this aim
in view, consider the following value function:

V(t,z,k) = min max
UeUcL v(-)

& (z[tr], M(k[ta])),  (24)

max
(z[t1],k[t1]) €X[t1]

where X[t] is the attainability tube of the differ-
ential inclusion (9).

Lemma 10. Value function (24) and solvability
set W*[k,t] are bound by the following state-
ments:

(1) solvability domain is the level set of value
function:

Wk, i) ={z | V(t,z,k) <0} (25)

(2) the following estimation holds when solvabil-
ity set is not empty:

V(t,z, k) < &*(z, W'k, 1)), (26)

which means that under optimal control the
distance between trajectory endpoint and
terminal target set M(k(t1)) is equal to
or smaller than the distance between initial
point and solvability set W*[k, t].

4.2 Control Synthesis Using Value Function

Theorem 11. (1) The value function satisfies the
principle of optimality:

V(ta T, k: V(tla g )) =
= V(t,$7k;V(T7'7';V(t1,',')))7 (27)
where V (t1,z,k) = d*(z, M(k)).
(2) The value function is the solution of Hamil-
ton—Jacobi-Bellman-Isaacs (H-J-B-I) equa-
tion

ov . <6V >
—— + min max{ -, ut+v)—

Ot  weP(t)veR" L\ Oz
oV
- (0, QW 5} =0 (28)

when tg < t < t1, k > 0, with the boundary
condition

oV oV

= i = — 2

o+ min (5em) ) )

and initial condition
V(tr, 2, k) = d*(z, M(k)). (30)

(3) Optimal control strategy is expressed as

t,x, k
U*(t,xz, k) = Arg min <M, u>
uEP(t) Oz

(31)

To compute this control strategy it is not neces-
sary to know the value function itself, but its level
sets will be enough because expression (31) uses
only the gradient of the value function. This idea
is developed in the next paragraph.

4.3 Control Synthesis Using Solvability Domain
Though expression (31) gives the optimal control

strategy, it is difficult to use because of having to
solve the H-J-B-I equation (27). However, there



exists another way of control synthesis for problem
2 which consists in applying the “extremal aiming
rule”:

Theorem 12. Consider the function

H(t,z, k) = d*(z, W*[k,1]) (32)
or (if alternated integral does not exist)

H(t,z, k) = d*(z,T" [k, 1]). (33)
The following assertions hold:

(1) The total derivative of function H(t,z,k)
along trajectories of system (4), (7) meets the
following inequality:

dH (2, x(t), k(t)

min max — =
u€P(t) vER™ dt

—6—H+ min max{ 6—Hu+v —
Ot ueP(t)veR™ ’
OH

— (1, QW 5} <0 (39)

(2) Feedback control strategy

H
U’(t,z,k) = Argmin <M,u>
ueP(t) Oz

(35)

solves the problem (2).

Note that though control strategy (35) does
not minimize the distance between z(t1) and
M(k(t1)), it guarantees that the latter will not be
greater than the distance between trajectory start
point and solvability set, as does optimal control
U*(t,z, k).

5. ANOTHER TYPE OF CONSTRAINTS

Let us now consider the situation with reverse
types of constraints: integral for control inputs
and geometric for disturbance. Equivalent prob-
lem will be considered straight away:

{50 =ut 40
(1) = —(u(t), P{)u(),

where, as before, (z(t),k(t)) is the state space
vector, u(t) is the control input and wv(t) is the
noise input. P(t) is a positively defined matrix
function continuous on the segment T = [to, t1].

te [to,tl], (36)

Control input is Lebesgue-integrable function
such that trajectories of system satisfy the state
constraint

k() >0, teT, (37)
which is identical to integral quadratic contraint

/ " @), POu®) dt < k(to).  (38)

to

Noise input is a Lebesgue-measurable function
restricted by geometric constraint

o(t) € O(t), teT, (39)

where set-valued mapping Q(t) is continuous in
Hausdorff metric.

As before, control strategy can belong to one of
the two classes:

(1) closed-loop (state feedback) strategies (Uct,):
set-valued functions U(t,z,k) assuring the
existence and extendability of solutions of the
differential inclusion

(0)<{(225) [ seunomor).
(40)

and
(2) open-loop strategies (Uor,): measurable func-
tions u = u(t) satisfying (2).

Remark 13. For a state feedback strategy U €
UcL to satisfy (37), it is sufficient that

U(t,z, k) = {0}. (41)
when k& < 0.

Problem 3. Given the terminal set M C R*H!,
specify a solvability set W*(t,t1, M) = W*[t] and
a state feedback control strategy U(t,x, k) € UcL
such that all solutions of the differential inclusion
(40) that start from any position (tg,z,k) €
T x W*[to] would reach the set M regardless of
disturbance v(-) restricted by (39).

This time it is assumed that the sections of target
set M at constant levels of k are non-decreasing,
i.e. when k1 > ko, then M (k1) D M(k2).

Let us now briefly formulate main results concern-
ing this problem.

5.1 Solvability Domain

Lemma 14. Minimax and maximin solvability do-
mains within the class of open-loop control strate-
gies can be found used the following relations for
their sections at constant levels of k:

W+[k,t] = W+(kat7t17M(')) =

= U Mo - vE=7P@0)] -

0k
t1
— [ Q(r)dr, (42)
t
t1

Q(r)dr —
—Vk—9P(t,t1) (43)



where P(t,t1) is an ellipsoid

Plt,tr) = & (o, ttl PY(r) dT). (44)

Upper and lower alternated integral are con-
structed the same way as in problem 2 using
formulae (42) and (43).

Theorem 15. (1) Solvability set W*[k,t] coin-
cides with the alternated integral if the latter
exists:

Wrk, t] = I(k, t,t1, M().  (45)

(2) Semigroup property in backward time (the
principle of optimality) is true for the solv-
ability set.

(3) Set-valued mapping W*[k,t] is the unique
solution of the evolution equation

1im1(z[k,t—a]+ag(t), U [z~

oc—0 0
0<y<k

ok —v)E (o,P—l(t))]) =0. (46)

5.2 Control Synthesis

Consider the following value function:

V(t,z,k) = min max
UeUcL v(+)
k()20 v(r)eQ(r)
d*(z[t1], M(k[t1])), (47
TR (z[tr], M(K[t1])),  (47)
where X[t] is the attainability tube of the differ-
ential inclusion (40).

Theorem 16. (1) Value function (47) is the solu-
tion of H-J-B-I equation

a—V-l—min max{ 6—Vu+v —
Ot  uweRmyeQ) | \ Oz’
- (u,P(t)u)%—Z} =0 (48)

with boundary condition

OV . omax (Y,
Ot  weQ() \ Oz’

and initial condition
V(t, 2, k) = d*(z, M(K)). (50)

(2) Solvability domain is the level set of value
function:

Wk, ] = {2 | V(t,2,k) <O} (51)

(3) Value function is the distance to the solvabil-
ity set:

=0 (49
k=0

V(t,z, k) = d*(z, W'k, 1)),  (52)

which means that guaranteed distance be-
tween trajectory endpoint and target set is

the same as distance between initial point
and solvability set. Formulae (51) and (52)
establish a one-to-one relation between value
functions and solvability domains.

(4) Value function satisfies the principle of opti-
mality

V(ta T, k; V(th K )) =
= V(t,x,k,V(T,,,V(tl,,))) (53)
where V (t1,z,k) = d?(z, M(k)).

(5) The following control strategy is optimal and
it solves the problem 3:

U*(t,x, k) =
oV
= Argmin {< > s P ak}
B xz € W[k, t],
_{l(%) Yov  pgwikg. OV
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